MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmval2 Structured version   Visualization version   GIF version

Theorem nmval2 24494
Description: The value of the norm on a group as the distance restricted to the elements of the base set to zero. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
nmfval2.n 𝑁 = (norm‘𝑊)
nmfval2.x 𝑋 = (Base‘𝑊)
nmfval2.z 0 = (0g𝑊)
nmfval2.d 𝐷 = (dist‘𝑊)
nmfval2.e 𝐸 = (𝐷 ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
nmval2 ((𝑊 ∈ Grp ∧ 𝐴𝑋) → (𝑁𝐴) = (𝐴𝐸 0 ))

Proof of Theorem nmval2
StepHypRef Expression
1 nmfval2.n . . . 4 𝑁 = (norm‘𝑊)
2 nmfval2.x . . . 4 𝑋 = (Base‘𝑊)
3 nmfval2.z . . . 4 0 = (0g𝑊)
4 nmfval2.d . . . 4 𝐷 = (dist‘𝑊)
51, 2, 3, 4nmval 24491 . . 3 (𝐴𝑋 → (𝑁𝐴) = (𝐴𝐷 0 ))
65adantl 481 . 2 ((𝑊 ∈ Grp ∧ 𝐴𝑋) → (𝑁𝐴) = (𝐴𝐷 0 ))
7 nmfval2.e . . . 4 𝐸 = (𝐷 ↾ (𝑋 × 𝑋))
87oveqi 7427 . . 3 (𝐴𝐸 0 ) = (𝐴(𝐷 ↾ (𝑋 × 𝑋)) 0 )
9 id 22 . . . 4 (𝐴𝑋𝐴𝑋)
102, 3grpidcl 18915 . . . 4 (𝑊 ∈ Grp → 0𝑋)
11 ovres 7581 . . . 4 ((𝐴𝑋0𝑋) → (𝐴(𝐷 ↾ (𝑋 × 𝑋)) 0 ) = (𝐴𝐷 0 ))
129, 10, 11syl2anr 596 . . 3 ((𝑊 ∈ Grp ∧ 𝐴𝑋) → (𝐴(𝐷 ↾ (𝑋 × 𝑋)) 0 ) = (𝐴𝐷 0 ))
138, 12eqtr2id 2780 . 2 ((𝑊 ∈ Grp ∧ 𝐴𝑋) → (𝐴𝐷 0 ) = (𝐴𝐸 0 ))
146, 13eqtrd 2767 1 ((𝑊 ∈ Grp ∧ 𝐴𝑋) → (𝑁𝐴) = (𝐴𝐸 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099   × cxp 5670  cres 5674  cfv 6542  (class class class)co 7414  Basecbs 17173  distcds 17235  0gc0g 17414  Grpcgrp 18883  normcnm 24478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-riota 7370  df-ov 7417  df-0g 17416  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-grp 18886  df-nm 24484
This theorem is referenced by:  nmhmcn  25040  nglmle  25223
  Copyright terms: Public domain W3C validator