MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfriota Structured version   Visualization version   GIF version

Theorem nfriota 7384
Description: A variable not free in a wff remains so in a restricted iota descriptor. (Contributed by NM, 12-Oct-2011.)
Hypotheses
Ref Expression
nfriota.1 𝑥𝜑
nfriota.2 𝑥𝐴
Assertion
Ref Expression
nfriota 𝑥(𝑦𝐴 𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfriota
StepHypRef Expression
1 nftru 1799 . . 3 𝑦
2 nfriota.1 . . . 4 𝑥𝜑
32a1i 11 . . 3 (⊤ → Ⅎ𝑥𝜑)
4 nfriota.2 . . . 4 𝑥𝐴
54a1i 11 . . 3 (⊤ → 𝑥𝐴)
61, 3, 5nfriotadw 7379 . 2 (⊤ → 𝑥(𝑦𝐴 𝜑))
76mptru 1541 1 𝑥(𝑦𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wtru 1535  wnf 1778  wnfc 2879  crio 7370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ral 3058  df-rex 3067  df-v 3472  df-in 3952  df-ss 3962  df-sn 4626  df-uni 4905  df-iota 6495  df-riota 7371
This theorem is referenced by:  csbriota  7387  nfoi  9532  lble  12191  nosupbnd1  27641  noinfbnd1  27656  riotasvd  38423  riotasv2d  38424  riotasv2s  38425  cdleme26ee  39828  cdleme31sn1  39849  cdlemefs32sn1aw  39882  cdleme43fsv1snlem  39888  cdleme41sn3a  39901  cdleme32d  39912  cdleme32f  39914  cdleme40m  39935  cdleme40n  39936  cdlemk36  40381  cdlemk38  40383  cdlemkid  40404  cdlemk19x  40411  cdlemk11t  40414
  Copyright terms: Public domain W3C validator