![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfriota | Structured version Visualization version GIF version |
Description: A variable not free in a wff remains so in a restricted iota descriptor. (Contributed by NM, 12-Oct-2011.) |
Ref | Expression |
---|---|
nfriota.1 | ⊢ Ⅎ𝑥𝜑 |
nfriota.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfriota | ⊢ Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1799 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfriota.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
4 | nfriota.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
6 | 1, 3, 5 | nfriotadw 7379 | . 2 ⊢ (⊤ → Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜑)) |
7 | 6 | mptru 1541 | 1 ⊢ Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1535 Ⅎwnf 1778 Ⅎwnfc 2879 ℩crio 7370 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3058 df-rex 3067 df-v 3472 df-in 3952 df-ss 3962 df-sn 4626 df-uni 4905 df-iota 6495 df-riota 7371 |
This theorem is referenced by: csbriota 7387 nfoi 9532 lble 12191 nosupbnd1 27641 noinfbnd1 27656 riotasvd 38423 riotasv2d 38424 riotasv2s 38425 cdleme26ee 39828 cdleme31sn1 39849 cdlemefs32sn1aw 39882 cdleme43fsv1snlem 39888 cdleme41sn3a 39901 cdleme32d 39912 cdleme32f 39914 cdleme40m 39935 cdleme40n 39936 cdlemk36 40381 cdlemk38 40383 cdlemkid 40404 cdlemk19x 40411 cdlemk11t 40414 |
Copyright terms: Public domain | W3C validator |