![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfopab1 | Structured version Visualization version GIF version |
Description: The first abstraction variable in an ordered-pair class abstraction is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nfopab1 | ⊢ Ⅎ𝑥{〈𝑥, 𝑦〉 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-opab 5205 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
2 | nfe1 2140 | . . 3 ⊢ Ⅎ𝑥∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) | |
3 | 2 | nfab 2905 | . 2 ⊢ Ⅎ𝑥{𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
4 | 1, 3 | nfcxfr 2897 | 1 ⊢ Ⅎ𝑥{〈𝑥, 𝑦〉 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1534 ∃wex 1774 {cab 2705 Ⅎwnfc 2879 〈cop 4630 {copab 5204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-opab 5205 |
This theorem is referenced by: nfmpt1 5250 rexopabb 5524 ssopab2bw 5543 ssopab2b 5545 0nelopabOLD 5564 dmopab 5912 rnopab 5950 funopab 6582 fvopab5 7032 zfrep6 7952 opabdm 32394 opabrn 32395 fpwrelmap 32509 fineqvrep 34709 bj-opabco 36661 vvdifopab 37726 aomclem8 42479 sprsymrelf 46829 |
Copyright terms: Public domain | W3C validator |