![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nelir | Structured version Visualization version GIF version |
Description: Inference associated with df-nel 3042. (Contributed by BJ, 7-Jul-2018.) |
Ref | Expression |
---|---|
nelir.1 | ⊢ ¬ 𝐴 ∈ 𝐵 |
Ref | Expression |
---|---|
nelir | ⊢ 𝐴 ∉ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelir.1 | . 2 ⊢ ¬ 𝐴 ∈ 𝐵 | |
2 | df-nel 3042 | . 2 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ 𝐴 ∉ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2099 ∉ wnel 3041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-nel 3042 |
This theorem is referenced by: ru 3773 prneli 4654 ruv 9617 ruALT 9618 cardprc 9995 pnfnre 11277 mnfnre 11279 eirr 16173 sqrt2irr 16217 lcmfnnval 16586 lcmf0 16596 smndex1n0mnd 18855 nsmndex1 18856 zringndrg 21381 topnex 22886 zfbas 23787 aaliou3 26273 finsumvtxdg2sstep 29350 xrge0iifcnv 33470 bj-0nel1 36368 bj-1nel0 36369 bj-0nelsngl 36386 ruvALT 42015 fmtnoinf 46799 fmtno5nprm 46846 4fppr1 46998 0nodd 47155 2nodd 47157 1neven 47223 2zrngnring 47243 |
Copyright terms: Public domain | W3C validator |