![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon2ai | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 16-Jan-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
necon2ai.1 | ⊢ (𝐴 = 𝐵 → ¬ 𝜑) |
Ref | Expression |
---|---|
necon2ai | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon2ai.1 | . . 3 ⊢ (𝐴 = 𝐵 → ¬ 𝜑) | |
2 | 1 | con2i 139 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
3 | 2 | neqned 2943 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1534 ≠ wne 2936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2937 |
This theorem is referenced by: necon2i 2971 intex 5334 iin0 5357 opelopabsb 5527 0ellim 6427 xpord2indlem 8147 ord1eln01 8511 ord2eln012 8512 1ellim 8513 2ellim 8514 0sdom1dom 9257 inf3lem3 9648 cardmin2 10017 pm54.43 10019 pr2ne 10022 canthp1lem2 10671 renepnf 11287 renemnf 11288 lt0ne0d 11804 nnne0ALT 12275 nn0nepnf 12577 hashnemnf 14330 hashnn0n0nn 14377 geolim 15843 geolim2 15844 georeclim 15845 geoisumr 15851 geoisum1c 15853 ramtcl2 16974 lhop1 25941 logdmn0 26568 logcnlem3 26572 bday1s 27758 lrold 27817 mulsval 28003 nbgrssovtx 29168 rusgrnumwwlkl1 29773 strlem1 32054 subfacp1lem1 34784 gonan0 34997 goaln0 34998 rankeq1o 35762 poimirlem9 37097 poimirlem18 37106 poimirlem19 37107 poimirlem20 37108 poimirlem32 37120 pssn0 41706 ensucne0 42950 fouriersw 45610 afvvfveq 46519 fdomne0 47893 |
Copyright terms: Public domain | W3C validator |