![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ncolne1 | Structured version Visualization version GIF version |
Description: Non-colinear points are different. (Contributed by Thierry Arnoux, 8-Aug-2019.) |
Ref | Expression |
---|---|
tglineelsb2.p | ⊢ 𝐵 = (Base‘𝐺) |
tglineelsb2.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglineelsb2.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglineelsb2.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
ncolne.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ncolne.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
ncolne.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
ncolne.2 | ⊢ (𝜑 → ¬ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) |
Ref | Expression |
---|---|
ncolne1 | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ncolne.2 | . . 3 ⊢ (𝜑 → ¬ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) | |
2 | tglineelsb2.p | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
3 | tglineelsb2.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
4 | tglineelsb2.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | tglineelsb2.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝐺 ∈ TarskiG) |
7 | ncolne.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
8 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑌 ∈ 𝐵) |
9 | ncolne.z | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
10 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑍 ∈ 𝐵) |
11 | ncolne.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
12 | 11 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 ∈ 𝐵) |
13 | eqid 2727 | . . . . . 6 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
14 | 2, 13, 4, 6, 12, 10 | tgbtwntriv1 28288 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 ∈ (𝑋𝐼𝑍)) |
15 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 = 𝑌) | |
16 | 15 | oveq1d 7429 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑋𝐼𝑍) = (𝑌𝐼𝑍)) |
17 | 14, 16 | eleqtrd 2830 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 ∈ (𝑌𝐼𝑍)) |
18 | 2, 3, 4, 6, 8, 10, 12, 17 | btwncolg1 28352 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) |
19 | 1, 18 | mtand 815 | . 2 ⊢ (𝜑 → ¬ 𝑋 = 𝑌) |
20 | 19 | neqned 2942 | 1 ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 ‘cfv 6542 (class class class)co 7414 Basecbs 17173 distcds 17235 TarskiGcstrkg 28224 Itvcitv 28230 LineGclng 28231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-iota 6494 df-fun 6544 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-trkgc 28245 df-trkgb 28246 df-trkgcb 28247 df-trkg 28250 |
This theorem is referenced by: ncolne2 28423 tglineneq 28441 midexlem 28489 mideulem2 28531 outpasch 28552 hlpasch 28553 trgcopy 28601 trgcopyeulem 28602 acopy 28630 acopyeu 28631 cgrg3col4 28650 tgasa1 28655 |
Copyright terms: Public domain | W3C validator |