![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mvrval2 | Structured version Visualization version GIF version |
Description: Value of the generating elements of the power series structure. (Contributed by Mario Carneiro, 7-Jan-2015.) |
Ref | Expression |
---|---|
mvrfval.v | ⊢ 𝑉 = (𝐼 mVar 𝑅) |
mvrfval.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
mvrfval.z | ⊢ 0 = (0g‘𝑅) |
mvrfval.o | ⊢ 1 = (1r‘𝑅) |
mvrfval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
mvrfval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑌) |
mvrval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
mvrval2.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
Ref | Expression |
---|---|
mvrval2 | ⊢ (𝜑 → ((𝑉‘𝑋)‘𝐹) = if(𝐹 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mvrfval.v | . . . 4 ⊢ 𝑉 = (𝐼 mVar 𝑅) | |
2 | mvrfval.d | . . . 4 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
3 | mvrfval.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
4 | mvrfval.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
5 | mvrfval.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
6 | mvrfval.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑌) | |
7 | mvrval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
8 | 1, 2, 3, 4, 5, 6, 7 | mvrval 21911 | . . 3 ⊢ (𝜑 → (𝑉‘𝑋) = (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))) |
9 | 8 | fveq1d 6893 | . 2 ⊢ (𝜑 → ((𝑉‘𝑋)‘𝐹) = ((𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))‘𝐹)) |
10 | mvrval2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
11 | eqeq1 2731 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ↔ 𝐹 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) | |
12 | 11 | ifbid 4547 | . . . 4 ⊢ (𝑓 = 𝐹 → if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ) = if(𝐹 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )) |
13 | eqid 2727 | . . . 4 ⊢ (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )) = (𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )) | |
14 | 4 | fvexi 6905 | . . . . 5 ⊢ 1 ∈ V |
15 | 3 | fvexi 6905 | . . . . 5 ⊢ 0 ∈ V |
16 | 14, 15 | ifex 4574 | . . . 4 ⊢ if(𝐹 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ) ∈ V |
17 | 12, 13, 16 | fvmpt 6999 | . . 3 ⊢ (𝐹 ∈ 𝐷 → ((𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))‘𝐹) = if(𝐹 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )) |
18 | 10, 17 | syl 17 | . 2 ⊢ (𝜑 → ((𝑓 ∈ 𝐷 ↦ if(𝑓 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))‘𝐹) = if(𝐹 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )) |
19 | 9, 18 | eqtrd 2767 | 1 ⊢ (𝜑 → ((𝑉‘𝑋)‘𝐹) = if(𝐹 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 {crab 3427 ifcif 4524 ↦ cmpt 5225 ◡ccnv 5671 “ cima 5675 ‘cfv 6542 (class class class)co 7414 ↑m cmap 8836 Fincfn 8955 0cc0 11130 1c1 11131 ℕcn 12234 ℕ0cn0 12494 0gc0g 17412 1rcur 20112 mVar cmvr 21825 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-mvr 21830 |
This theorem is referenced by: mvrid 21913 mvrf1 21915 mvrcl 21921 mhpvarcl 22059 |
Copyright terms: Public domain | W3C validator |