![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulne0i | Structured version Visualization version GIF version |
Description: The product of two nonzero numbers is nonzero. (Contributed by NM, 15-Feb-1995.) |
Ref | Expression |
---|---|
muln0.1 | ⊢ 𝐴 ∈ ℂ |
muln0.2 | ⊢ 𝐵 ∈ ℂ |
muln0.3 | ⊢ 𝐴 ≠ 0 |
muln0.4 | ⊢ 𝐵 ≠ 0 |
Ref | Expression |
---|---|
mulne0i | ⊢ (𝐴 · 𝐵) ≠ 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muln0.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | muln0.3 | . 2 ⊢ 𝐴 ≠ 0 | |
3 | muln0.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
4 | muln0.4 | . 2 ⊢ 𝐵 ≠ 0 | |
5 | mulne0 11887 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐴 · 𝐵) ≠ 0) | |
6 | 1, 2, 3, 4, 5 | mp4an 692 | 1 ⊢ (𝐴 · 𝐵) ≠ 0 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2099 ≠ wne 2937 (class class class)co 7420 ℂcc 11137 0cc0 11139 · cmul 11144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 |
This theorem is referenced by: 2muline0 12467 bpoly4 16036 efeq1 26475 eflogeq 26549 root1eq1 26703 ang180lem1 26754 ang180lem3 26756 quart1lem 26800 itgexpif 34238 hgt750lem 34283 quad3 35274 proot1ex 42624 wallispilem4 45456 dirkertrigeq 45489 |
Copyright terms: Public domain | W3C validator |