![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mtbir | Structured version Visualization version GIF version |
Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 14-Oct-2012.) |
Ref | Expression |
---|---|
mtbir.1 | ⊢ ¬ 𝜓 |
mtbir.2 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
mtbir | ⊢ ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbir.1 | . 2 ⊢ ¬ 𝜓 | |
2 | mtbir.2 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | bicomi 223 | . 2 ⊢ (𝜓 ↔ 𝜑) |
4 | 1, 3 | mtbi 322 | 1 ⊢ ¬ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: 3pm3.2ni 1484 fal 1548 eqneltri 2847 nemtbir 3033 ru 3773 pssirr 4096 indifdirOLD 4281 noel 4326 noelOLD 4327 iun0 5059 0iun 5060 br0 5191 vprc 5309 iin0 5356 nfnid 5369 opelopabsb 5526 0nelopab 5563 0nelxp 5706 0xp 5770 nrelv 5796 dm0 5917 cnv0 6139 co02 6258 nlim0 6422 snsn0non 6488 imadif 6631 0fv 6935 poxp2 8140 poseq 8155 tz7.44lem1 8417 nlim1 8501 nlim2 8502 sdom0 9122 canth2 9144 snnen2o 9251 1sdom2 9254 canthp1lem2 10662 pwxpndom2 10674 adderpq 10965 mulerpq 10966 0ncn 11142 ax1ne0 11169 inelr 12218 xrltnr 13117 fzouzdisj 13686 lsw0 14533 eirr 16167 ruc 16205 aleph1re 16207 sqrt2irr 16211 n2dvds1 16330 n2dvds3 16333 sadc0 16414 1nprm 16635 join0 18382 meet0 18383 smndex1n0mnd 18849 nsmndex1 18850 smndex2dnrinv 18852 odhash 19513 cnfldfun 21273 cnfldfunOLD 21286 zringndrg 21374 zfbas 23774 ustn0 24099 zclmncvs 25050 lhop 25923 dvrelog 26545 nosgnn0 27565 sltsolem1 27582 addsrid 27855 muls01 27986 mulsrid 27987 axlowdimlem13 28739 ntrl2v2e 29942 konigsberglem4 30039 avril1 30247 helloworld 30249 topnfbey 30253 vsfval 30417 dmadjrnb 31690 xrge00 32711 esumrnmpt2 33610 measvuni 33756 sibf0 33877 ballotlem4 34041 signswch 34116 satf0n0 34911 fmlaomn0 34923 gonan0 34925 goaln0 34926 fmla0disjsuc 34931 elpotr 35300 dfon2lem7 35308 linedegen 35662 nmotru 35815 limsucncmpi 35852 bj-ru1 36345 bj-0nel1 36355 bj-inftyexpitaudisj 36607 bj-pinftynminfty 36629 finxp0 36793 poimirlem30 37045 coss0 37875 epnsymrel 37958 diophren 42145 notbicom 44450 rexanuz2nf 44788 stoweidlem44 45345 fourierdlem62 45469 salexct2 45640 aisbnaxb 46206 dandysum2p2e4 46293 iota0ndef 46334 aiota0ndef 46390 257prm 46814 fmtno4nprmfac193 46827 139prmALT 46849 31prm 46850 127prm 46852 nnsum4primeseven 47053 nnsum4primesevenALTV 47054 0nodd 47145 2nodd 47147 1neven 47213 2zrngnring 47233 ex-gt 48072 alsi-no-surprise 48142 |
Copyright terms: Public domain | W3C validator |