![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mptresid | Structured version Visualization version GIF version |
Description: The restricted identity relation expressed in maps-to notation. (Contributed by FL, 25-Apr-2012.) |
Ref | Expression |
---|---|
mptresid | ⊢ ( I ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opabresid 6047 | . 2 ⊢ ( I ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} | |
2 | df-mpt 5226 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝑥) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} | |
3 | 1, 2 | eqtr4i 2758 | 1 ⊢ ( I ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1534 ∈ wcel 2099 {copab 5204 ↦ cmpt 5225 I cid 5569 ↾ cres 5674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-res 5684 |
This theorem is referenced by: idref 7149 2fvcoidd 7300 pwfseqlem5 10678 restid2 17403 curf2ndf 18230 hofcl 18242 yonedainv 18264 smndex2dlinvh 18860 sylow1lem2 19545 sylow3lem1 19573 0frgp 19725 frgpcyg 21494 evpmodpmf1o 21515 cnmptid 23552 txswaphmeolem 23695 idnghm 24647 dvexp 25872 dvmptid 25876 mvth 25912 plyid 26130 coeidp 26185 dgrid 26186 plyremlem 26226 taylply2 26289 taylply2OLD 26290 wilthlem2 26988 ftalem7 26998 fusgrfis 29130 fzto1st1 32801 cycpm2tr 32818 zrhre 33556 qqhre 33557 fsovcnvlem 43366 fourierdlem60 45477 fourierdlem61 45478 itcoval0mpt 47662 |
Copyright terms: Public domain | W3C validator |