![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mosn | Structured version Visualization version GIF version |
Description: "At most one" element in a singleton. (Contributed by Zhi Wang, 19-Sep-2024.) |
Ref | Expression |
---|---|
mosn | ⊢ (𝐴 = {𝐵} → ∃*𝑥 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rmosn 4719 | . . 3 ⊢ ∃*𝑥 ∈ {𝐵}⊤ | |
2 | rmotru 47847 | . . 3 ⊢ (∃*𝑥 𝑥 ∈ {𝐵} ↔ ∃*𝑥 ∈ {𝐵}⊤) | |
3 | 1, 2 | mpbir 230 | . 2 ⊢ ∃*𝑥 𝑥 ∈ {𝐵} |
4 | eleq2 2817 | . . 3 ⊢ (𝐴 = {𝐵} → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝐵})) | |
5 | 4 | mobidv 2538 | . 2 ⊢ (𝐴 = {𝐵} → (∃*𝑥 𝑥 ∈ 𝐴 ↔ ∃*𝑥 𝑥 ∈ {𝐵})) |
6 | 3, 5 | mpbiri 258 | 1 ⊢ (𝐴 = {𝐵} → ∃*𝑥 𝑥 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ⊤wtru 1535 ∈ wcel 2099 ∃*wmo 2527 ∃*wrmo 3370 {csn 4624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-v 3471 df-sbc 3775 df-dif 3947 df-nul 4319 df-sn 4625 |
This theorem is referenced by: mo0 47856 mosssn 47857 mo0sn 47858 |
Copyright terms: Public domain | W3C validator |