Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mosn Structured version   Visualization version   GIF version

Theorem mosn 47855
Description: "At most one" element in a singleton. (Contributed by Zhi Wang, 19-Sep-2024.)
Assertion
Ref Expression
mosn (𝐴 = {𝐵} → ∃*𝑥 𝑥𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem mosn
StepHypRef Expression
1 rmosn 4719 . . 3 ∃*𝑥 ∈ {𝐵}⊤
2 rmotru 47847 . . 3 (∃*𝑥 𝑥 ∈ {𝐵} ↔ ∃*𝑥 ∈ {𝐵}⊤)
31, 2mpbir 230 . 2 ∃*𝑥 𝑥 ∈ {𝐵}
4 eleq2 2817 . . 3 (𝐴 = {𝐵} → (𝑥𝐴𝑥 ∈ {𝐵}))
54mobidv 2538 . 2 (𝐴 = {𝐵} → (∃*𝑥 𝑥𝐴 ↔ ∃*𝑥 𝑥 ∈ {𝐵}))
63, 5mpbiri 258 1 (𝐴 = {𝐵} → ∃*𝑥 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wtru 1535  wcel 2099  ∃*wmo 2527  ∃*wrmo 3370  {csn 4624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-v 3471  df-sbc 3775  df-dif 3947  df-nul 4319  df-sn 4625
This theorem is referenced by:  mo0  47856  mosssn  47857  mo0sn  47858
  Copyright terms: Public domain W3C validator