MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  meetlem Structured version   Visualization version   GIF version

Theorem meetlem 18380
Description: Lemma for meet properties. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 12-Sep-2018.)
Hypotheses
Ref Expression
meetval2.b 𝐵 = (Base‘𝐾)
meetval2.l = (le‘𝐾)
meetval2.m = (meet‘𝐾)
meetval2.k (𝜑𝐾𝑉)
meetval2.x (𝜑𝑋𝐵)
meetval2.y (𝜑𝑌𝐵)
meetlem.e (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
Assertion
Ref Expression
meetlem (𝜑 → (((𝑋 𝑌) 𝑋 ∧ (𝑋 𝑌) 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 (𝑋 𝑌))))
Distinct variable groups:   𝑧,𝐵   𝑧,   𝑧,𝐾   𝑧,𝑋   𝑧,𝑌
Allowed substitution hints:   𝜑(𝑧)   (𝑧)   𝑉(𝑧)

Proof of Theorem meetlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 meetval2.b . . . . 5 𝐵 = (Base‘𝐾)
2 meetval2.l . . . . 5 = (le‘𝐾)
3 meetval2.m . . . . 5 = (meet‘𝐾)
4 meetval2.k . . . . 5 (𝜑𝐾𝑉)
5 meetval2.x . . . . 5 (𝜑𝑋𝐵)
6 meetval2.y . . . . 5 (𝜑𝑌𝐵)
7 meetlem.e . . . . 5 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
81, 2, 3, 4, 5, 6, 7meeteu 18379 . . . 4 (𝜑 → ∃!𝑥𝐵 ((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥)))
9 riotasbc 7389 . . . 4 (∃!𝑥𝐵 ((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥)) → [(𝑥𝐵 ((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥))) / 𝑥]((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥)))
108, 9syl 17 . . 3 (𝜑[(𝑥𝐵 ((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥))) / 𝑥]((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥)))
111, 2, 3, 4, 5, 6meetval2 18378 . . . 4 (𝜑 → (𝑋 𝑌) = (𝑥𝐵 ((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥))))
1211sbceq1d 3779 . . 3 (𝜑 → ([(𝑋 𝑌) / 𝑥]((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥)) ↔ [(𝑥𝐵 ((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥))) / 𝑥]((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥))))
1310, 12mpbird 257 . 2 (𝜑[(𝑋 𝑌) / 𝑥]((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥)))
14 ovex 7447 . . 3 (𝑋 𝑌) ∈ V
15 breq1 5145 . . . . 5 (𝑥 = (𝑋 𝑌) → (𝑥 𝑋 ↔ (𝑋 𝑌) 𝑋))
16 breq1 5145 . . . . 5 (𝑥 = (𝑋 𝑌) → (𝑥 𝑌 ↔ (𝑋 𝑌) 𝑌))
1715, 16anbi12d 630 . . . 4 (𝑥 = (𝑋 𝑌) → ((𝑥 𝑋𝑥 𝑌) ↔ ((𝑋 𝑌) 𝑋 ∧ (𝑋 𝑌) 𝑌)))
18 breq2 5146 . . . . . 6 (𝑥 = (𝑋 𝑌) → (𝑧 𝑥𝑧 (𝑋 𝑌)))
1918imbi2d 340 . . . . 5 (𝑥 = (𝑋 𝑌) → (((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥) ↔ ((𝑧 𝑋𝑧 𝑌) → 𝑧 (𝑋 𝑌))))
2019ralbidv 3172 . . . 4 (𝑥 = (𝑋 𝑌) → (∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥) ↔ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 (𝑋 𝑌))))
2117, 20anbi12d 630 . . 3 (𝑥 = (𝑋 𝑌) → (((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥)) ↔ (((𝑋 𝑌) 𝑋 ∧ (𝑋 𝑌) 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 (𝑋 𝑌)))))
2214, 21sbcie 3817 . 2 ([(𝑋 𝑌) / 𝑥]((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥)) ↔ (((𝑋 𝑌) 𝑋 ∧ (𝑋 𝑌) 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 (𝑋 𝑌))))
2313, 22sylib 217 1 (𝜑 → (((𝑋 𝑌) 𝑋 ∧ (𝑋 𝑌) 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 (𝑋 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wral 3056  ∃!wreu 3369  [wsbc 3774  cop 4630   class class class wbr 5142  dom cdm 5672  cfv 6542  crio 7369  (class class class)co 7414  Basecbs 17171  lecple 17231  meetcmee 18295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-glb 18330  df-meet 18332
This theorem is referenced by:  lemeet1  18381  lemeet2  18382  meetle  18383
  Copyright terms: Public domain W3C validator