![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdhval0 | Structured version Visualization version GIF version |
Description: Lemmma for ~? mapdh . (Contributed by NM, 3-Apr-2015.) |
Ref | Expression |
---|---|
mapdh.q | ⊢ 𝑄 = (0g‘𝐶) |
mapdh.i | ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
mapdh0.o | ⊢ 0 = (0g‘𝑈) |
mapdh0.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
mapdh0.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
Ref | Expression |
---|---|
mapdhval0 | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 0 〉) = 𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdh.q | . . 3 ⊢ 𝑄 = (0g‘𝐶) | |
2 | mapdh.i | . . 3 ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
3 | mapdh0.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
4 | mapdh0.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
5 | mapdh0.o | . . . . 5 ⊢ 0 = (0g‘𝑈) | |
6 | 5 | fvexi 6906 | . . . 4 ⊢ 0 ∈ V |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ V) |
8 | 1, 2, 3, 4, 7 | mapdhval 41192 | . 2 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 0 〉) = if( 0 = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{ 0 })) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 0 )})) = (𝐽‘{(𝐹𝑅ℎ)}))))) |
9 | eqid 2728 | . . 3 ⊢ 0 = 0 | |
10 | 9 | iftruei 4532 | . 2 ⊢ if( 0 = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{ 0 })) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 0 )})) = (𝐽‘{(𝐹𝑅ℎ)})))) = 𝑄 |
11 | 8, 10 | eqtrdi 2784 | 1 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 0 〉) = 𝑄) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Vcvv 3470 ifcif 4525 {csn 4625 〈cotp 4633 ↦ cmpt 5226 ‘cfv 6543 ℩crio 7370 (class class class)co 7415 1st c1st 7986 2nd c2nd 7987 0gc0g 17415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-ot 4634 df-uni 4905 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-iota 6495 df-fun 6545 df-fv 6551 df-riota 7371 df-ov 7418 df-1st 7988 df-2nd 7989 |
This theorem is referenced by: mapdhcl 41195 mapdh6bN 41205 mapdh6cN 41206 mapdh6dN 41207 mapdh8 41256 |
Copyright terms: Public domain | W3C validator |