Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh8ad Structured version   Visualization version   GIF version

Theorem mapdh8ad 41241
Description: Part of Part (8) in [Baer] p. 48. (Contributed by NM, 13-May-2015.)
Hypotheses
Ref Expression
mapdh8a.h 𝐻 = (LHyp‘𝐾)
mapdh8a.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh8a.v 𝑉 = (Base‘𝑈)
mapdh8a.s = (-g𝑈)
mapdh8a.o 0 = (0g𝑈)
mapdh8a.n 𝑁 = (LSpan‘𝑈)
mapdh8a.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh8a.d 𝐷 = (Base‘𝐶)
mapdh8a.r 𝑅 = (-g𝐶)
mapdh8a.q 𝑄 = (0g𝐶)
mapdh8a.j 𝐽 = (LSpan‘𝐶)
mapdh8a.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh8a.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh8a.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdh8ac.f (𝜑𝐹𝐷)
mapdh8ac.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdh8ac.eg (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
mapdh8ac.ee (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
mapdh8ac.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdh8ac.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdh8ac.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
mapdh8ac.t (𝜑𝑇 ∈ (𝑉 ∖ { 0 }))
mapdh8ac.yn (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑇}))
mapdh8ad.xy (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdh8ad.xz (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
Assertion
Ref Expression
mapdh8ad (𝜑 → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑍, 𝐸, 𝑇⟩))
Distinct variable groups:   𝑥,,   0 ,,𝑥   𝐶,   𝐷,,𝑥   ,𝐹,𝑥   ,𝐼   ,𝐺,𝑥   ,𝐽,𝑥   ,𝑀,𝑥   ,𝑁,𝑥   𝜑,   𝑅,,𝑥   𝑥,𝑄   𝑇,,𝑥   𝑈,   ,𝑋,𝑥   ,𝑌,𝑥   ,𝐸,𝑥   ,𝑍,𝑥   𝑥,𝐼   ,𝑉
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑄()   𝑈(𝑥)   𝐻(𝑥,)   𝐾(𝑥,)   𝑉(𝑥)   𝑊(𝑥,)

Proof of Theorem mapdh8ad
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 mapdh8a.h . . 3 𝐻 = (LHyp‘𝐾)
2 mapdh8a.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdh8a.v . . 3 𝑉 = (Base‘𝑈)
4 mapdh8a.n . . 3 𝑁 = (LSpan‘𝑈)
5 mapdh8a.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 mapdh8ac.x . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
76eldifad 3956 . . 3 (𝜑𝑋𝑉)
8 mapdh8ac.y . . . 4 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
98eldifad 3956 . . 3 (𝜑𝑌𝑉)
10 mapdh8ac.z . . . 4 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
1110eldifad 3956 . . 3 (𝜑𝑍𝑉)
121, 2, 3, 4, 5, 7, 9, 11dvh3dim2 40910 . 2 (𝜑 → ∃𝑤𝑉𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})))
13 mapdh8a.s . . . 4 = (-g𝑈)
14 mapdh8a.o . . . 4 0 = (0g𝑈)
15 mapdh8a.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
16 mapdh8a.d . . . 4 𝐷 = (Base‘𝐶)
17 mapdh8a.r . . . 4 𝑅 = (-g𝐶)
18 mapdh8a.q . . . 4 𝑄 = (0g𝐶)
19 mapdh8a.j . . . 4 𝐽 = (LSpan‘𝐶)
20 mapdh8a.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
21 mapdh8a.i . . . 4 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
2253ad2ant1 1131 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
23 mapdh8ac.f . . . . 5 (𝜑𝐹𝐷)
24233ad2ant1 1131 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → 𝐹𝐷)
25 mapdh8ac.mn . . . . 5 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
26253ad2ant1 1131 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
27 mapdh8ac.eg . . . . 5 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
28273ad2ant1 1131 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
29 mapdh8ac.ee . . . . 5 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
30293ad2ant1 1131 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
3163ad2ant1 1131 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → 𝑋 ∈ (𝑉 ∖ { 0 }))
3283ad2ant1 1131 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → 𝑌 ∈ (𝑉 ∖ { 0 }))
33103ad2ant1 1131 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → 𝑍 ∈ (𝑉 ∖ { 0 }))
34 mapdh8ac.t . . . . 5 (𝜑𝑇 ∈ (𝑉 ∖ { 0 }))
35343ad2ant1 1131 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → 𝑇 ∈ (𝑉 ∖ { 0 }))
36 mapdh8ac.yn . . . . 5 (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑇}))
37363ad2ant1 1131 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → (𝑁‘{𝑋}) = (𝑁‘{𝑇}))
38 eqidd 2728 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → (𝐼‘⟨𝑋, 𝐹, 𝑤⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑤⟩))
39 eqid 2727 . . . . 5 (LSubSp‘𝑈) = (LSubSp‘𝑈)
401, 2, 5dvhlmod 40572 . . . . . 6 (𝜑𝑈 ∈ LMod)
41403ad2ant1 1131 . . . . 5 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → 𝑈 ∈ LMod)
423, 39, 4, 40, 7, 9lspprcl 20855 . . . . . 6 (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
43423ad2ant1 1131 . . . . 5 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
44 simp2 1135 . . . . 5 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → 𝑤𝑉)
45 simp3l 1199 . . . . 5 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
4614, 39, 41, 43, 44, 45lssneln0 20830 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → 𝑤 ∈ (𝑉 ∖ { 0 }))
471, 2, 5dvhlvec 40571 . . . . . . . 8 (𝜑𝑈 ∈ LVec)
48473ad2ant1 1131 . . . . . . 7 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → 𝑈 ∈ LVec)
4973ad2ant1 1131 . . . . . . 7 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → 𝑋𝑉)
5093ad2ant1 1131 . . . . . . 7 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → 𝑌𝑉)
513, 4, 48, 44, 49, 50, 45lspindpi 21013 . . . . . 6 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌})))
5251simprd 495 . . . . 5 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}))
5352necomd 2991 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤}))
54 simpl1 1189 . . . . . . 7 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) → 𝜑)
5554, 47syl 17 . . . . . 6 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) → 𝑈 ∈ LVec)
5654, 6syl 17 . . . . . 6 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) → 𝑋 ∈ (𝑉 ∖ { 0 }))
57 simpl2 1190 . . . . . 6 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) → 𝑤𝑉)
5854, 9syl 17 . . . . . 6 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) → 𝑌𝑉)
59 mapdh8ad.xy . . . . . . 7 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
6054, 59syl 17 . . . . . 6 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
61 simpr 484 . . . . . . 7 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) → 𝑋 ∈ (𝑁‘{𝑌, 𝑤}))
62 prcom 4732 . . . . . . . 8 {𝑌, 𝑤} = {𝑤, 𝑌}
6362fveq2i 6894 . . . . . . 7 (𝑁‘{𝑌, 𝑤}) = (𝑁‘{𝑤, 𝑌})
6461, 63eleqtrdi 2838 . . . . . 6 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) → 𝑋 ∈ (𝑁‘{𝑤, 𝑌}))
653, 14, 4, 55, 56, 57, 58, 60, 64lspexch 21010 . . . . 5 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) → 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
6645, 65mtand 815 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤}))
67113ad2ant1 1131 . . . . . 6 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → 𝑍𝑉)
68 simp3r 1200 . . . . . 6 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))
693, 4, 48, 44, 49, 67, 68lspindpi 21013 . . . . 5 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑍})))
7069simprd 495 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑍}))
71 simpl1 1189 . . . . . . 7 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑤, 𝑍})) → 𝜑)
7271, 47syl 17 . . . . . 6 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑤, 𝑍})) → 𝑈 ∈ LVec)
7371, 6syl 17 . . . . . 6 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑤, 𝑍})) → 𝑋 ∈ (𝑉 ∖ { 0 }))
74 simpl2 1190 . . . . . 6 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑤, 𝑍})) → 𝑤𝑉)
7571, 11syl 17 . . . . . 6 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑤, 𝑍})) → 𝑍𝑉)
76 mapdh8ad.xz . . . . . . 7 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
7771, 76syl 17 . . . . . 6 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑤, 𝑍})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
78 simpr 484 . . . . . 6 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑤, 𝑍})) → 𝑋 ∈ (𝑁‘{𝑤, 𝑍}))
793, 14, 4, 72, 73, 74, 75, 77, 78lspexch 21010 . . . . 5 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑤, 𝑍})) → 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))
8068, 79mtand 815 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → ¬ 𝑋 ∈ (𝑁‘{𝑤, 𝑍}))
811, 2, 3, 13, 14, 4, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 28, 30, 31, 32, 33, 35, 37, 38, 46, 53, 66, 70, 80mapdh8ac 41240 . . 3 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑍, 𝐸, 𝑇⟩))
8281rexlimdv3a 3154 . 2 (𝜑 → (∃𝑤𝑉𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑍, 𝐸, 𝑇⟩)))
8312, 82mpd 15 1 (𝜑 → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑍, 𝐸, 𝑇⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2935  wrex 3065  Vcvv 3469  cdif 3941  ifcif 4524  {csn 4624  {cpr 4626  cotp 4632  cmpt 5225  cfv 6542  crio 7369  (class class class)co 7414  1st c1st 7985  2nd c2nd 7986  Basecbs 17173  0gc0g 17414  -gcsg 18885  LModclmod 20736  LSubSpclss 20808  LSpanclspn 20848  LVecclvec 20980  HLchlt 38811  LHypclh 39446  DVecHcdvh 40540  LCDualclcd 41048  mapdcmpd 41086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-riotaBAD 38414
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-ot 4633  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-tpos 8225  df-undef 8272  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-n0 12497  df-z 12583  df-uz 12847  df-fz 13511  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-0g 17416  df-mre 17559  df-mrc 17560  df-acs 17562  df-proset 18280  df-poset 18298  df-plt 18315  df-lub 18331  df-glb 18332  df-join 18333  df-meet 18334  df-p0 18410  df-p1 18411  df-lat 18417  df-clat 18484  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-submnd 18734  df-grp 18886  df-minusg 18887  df-sbg 18888  df-subg 19071  df-cntz 19261  df-oppg 19290  df-lsm 19584  df-cmn 19730  df-abl 19731  df-mgp 20068  df-rng 20086  df-ur 20115  df-ring 20168  df-oppr 20266  df-dvdsr 20289  df-unit 20290  df-invr 20320  df-dvr 20333  df-drng 20619  df-lmod 20738  df-lss 20809  df-lsp 20849  df-lvec 20981  df-lsatoms 38437  df-lshyp 38438  df-lcv 38480  df-lfl 38519  df-lkr 38547  df-ldual 38585  df-oposet 38637  df-ol 38639  df-oml 38640  df-covers 38727  df-ats 38728  df-atl 38759  df-cvlat 38783  df-hlat 38812  df-llines 38960  df-lplanes 38961  df-lvols 38962  df-lines 38963  df-psubsp 38965  df-pmap 38966  df-padd 39258  df-lhyp 39450  df-laut 39451  df-ldil 39566  df-ltrn 39567  df-trl 39621  df-tgrp 40205  df-tendo 40217  df-edring 40219  df-dveca 40465  df-disoa 40491  df-dvech 40541  df-dib 40601  df-dic 40635  df-dih 40691  df-doch 40810  df-djh 40857  df-lcdual 41049  df-mapd 41087
This theorem is referenced by:  mapdh8j  41249
  Copyright terms: Public domain W3C validator