![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspun0 | Structured version Visualization version GIF version |
Description: The span of a union with the zero subspace. (Contributed by NM, 22-May-2015.) |
Ref | Expression |
---|---|
lspun0.v | ⊢ 𝑉 = (Base‘𝑊) |
lspun0.o | ⊢ 0 = (0g‘𝑊) |
lspun0.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspun0.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lspun0.x | ⊢ (𝜑 → 𝑋 ⊆ 𝑉) |
Ref | Expression |
---|---|
lspun0 | ⊢ (𝜑 → (𝑁‘(𝑋 ∪ { 0 })) = (𝑁‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspun0.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
2 | lspun0.x | . . 3 ⊢ (𝜑 → 𝑋 ⊆ 𝑉) | |
3 | lspun0.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
4 | lspun0.o | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
5 | 3, 4 | lmod0vcl 20768 | . . . . 5 ⊢ (𝑊 ∈ LMod → 0 ∈ 𝑉) |
6 | 1, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 0 ∈ 𝑉) |
7 | 6 | snssd 4809 | . . 3 ⊢ (𝜑 → { 0 } ⊆ 𝑉) |
8 | lspun0.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
9 | 3, 8 | lspun 20865 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ⊆ 𝑉 ∧ { 0 } ⊆ 𝑉) → (𝑁‘(𝑋 ∪ { 0 })) = (𝑁‘((𝑁‘𝑋) ∪ (𝑁‘{ 0 })))) |
10 | 1, 2, 7, 9 | syl3anc 1369 | . 2 ⊢ (𝜑 → (𝑁‘(𝑋 ∪ { 0 })) = (𝑁‘((𝑁‘𝑋) ∪ (𝑁‘{ 0 })))) |
11 | 4, 8 | lspsn0 20886 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → (𝑁‘{ 0 }) = { 0 }) |
12 | 1, 11 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{ 0 }) = { 0 }) |
13 | 12 | uneq2d 4160 | . . . . 5 ⊢ (𝜑 → ((𝑁‘𝑋) ∪ (𝑁‘{ 0 })) = ((𝑁‘𝑋) ∪ { 0 })) |
14 | eqid 2728 | . . . . . . . . 9 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
15 | 3, 14, 8 | lspcl 20854 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ⊆ 𝑉) → (𝑁‘𝑋) ∈ (LSubSp‘𝑊)) |
16 | 1, 2, 15 | syl2anc 583 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘𝑋) ∈ (LSubSp‘𝑊)) |
17 | 4, 14 | lss0ss 20827 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ (𝑁‘𝑋) ∈ (LSubSp‘𝑊)) → { 0 } ⊆ (𝑁‘𝑋)) |
18 | 1, 16, 17 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → { 0 } ⊆ (𝑁‘𝑋)) |
19 | ssequn2 4180 | . . . . . 6 ⊢ ({ 0 } ⊆ (𝑁‘𝑋) ↔ ((𝑁‘𝑋) ∪ { 0 }) = (𝑁‘𝑋)) | |
20 | 18, 19 | sylib 217 | . . . . 5 ⊢ (𝜑 → ((𝑁‘𝑋) ∪ { 0 }) = (𝑁‘𝑋)) |
21 | 13, 20 | eqtrd 2768 | . . . 4 ⊢ (𝜑 → ((𝑁‘𝑋) ∪ (𝑁‘{ 0 })) = (𝑁‘𝑋)) |
22 | 21 | fveq2d 6896 | . . 3 ⊢ (𝜑 → (𝑁‘((𝑁‘𝑋) ∪ (𝑁‘{ 0 }))) = (𝑁‘(𝑁‘𝑋))) |
23 | 3, 8 | lspidm 20864 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ⊆ 𝑉) → (𝑁‘(𝑁‘𝑋)) = (𝑁‘𝑋)) |
24 | 1, 2, 23 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝑁‘(𝑁‘𝑋)) = (𝑁‘𝑋)) |
25 | 22, 24 | eqtrd 2768 | . 2 ⊢ (𝜑 → (𝑁‘((𝑁‘𝑋) ∪ (𝑁‘{ 0 }))) = (𝑁‘𝑋)) |
26 | 10, 25 | eqtrd 2768 | 1 ⊢ (𝜑 → (𝑁‘(𝑋 ∪ { 0 })) = (𝑁‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ∪ cun 3943 ⊆ wss 3945 {csn 4625 ‘cfv 6543 Basecbs 17174 0gc0g 17415 LModclmod 20737 LSubSpclss 20809 LSpanclspn 20849 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7866 df-1st 7988 df-2nd 7989 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-er 8719 df-en 8959 df-dom 8960 df-sdom 8961 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-plusg 17240 df-0g 17417 df-mgm 18594 df-sgrp 18673 df-mnd 18689 df-grp 18887 df-minusg 18888 df-sbg 18889 df-cmn 19731 df-abl 19732 df-mgp 20069 df-rng 20087 df-ur 20116 df-ring 20169 df-lmod 20739 df-lss 20810 df-lsp 20850 |
This theorem is referenced by: dvh4dimN 40915 |
Copyright terms: Public domain | W3C validator |