MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspun0 Structured version   Visualization version   GIF version

Theorem lspun0 20889
Description: The span of a union with the zero subspace. (Contributed by NM, 22-May-2015.)
Hypotheses
Ref Expression
lspun0.v 𝑉 = (Base‘𝑊)
lspun0.o 0 = (0g𝑊)
lspun0.n 𝑁 = (LSpan‘𝑊)
lspun0.w (𝜑𝑊 ∈ LMod)
lspun0.x (𝜑𝑋𝑉)
Assertion
Ref Expression
lspun0 (𝜑 → (𝑁‘(𝑋 ∪ { 0 })) = (𝑁𝑋))

Proof of Theorem lspun0
StepHypRef Expression
1 lspun0.w . . 3 (𝜑𝑊 ∈ LMod)
2 lspun0.x . . 3 (𝜑𝑋𝑉)
3 lspun0.v . . . . . 6 𝑉 = (Base‘𝑊)
4 lspun0.o . . . . . 6 0 = (0g𝑊)
53, 4lmod0vcl 20768 . . . . 5 (𝑊 ∈ LMod → 0𝑉)
61, 5syl 17 . . . 4 (𝜑0𝑉)
76snssd 4809 . . 3 (𝜑 → { 0 } ⊆ 𝑉)
8 lspun0.n . . . 4 𝑁 = (LSpan‘𝑊)
93, 8lspun 20865 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉 ∧ { 0 } ⊆ 𝑉) → (𝑁‘(𝑋 ∪ { 0 })) = (𝑁‘((𝑁𝑋) ∪ (𝑁‘{ 0 }))))
101, 2, 7, 9syl3anc 1369 . 2 (𝜑 → (𝑁‘(𝑋 ∪ { 0 })) = (𝑁‘((𝑁𝑋) ∪ (𝑁‘{ 0 }))))
114, 8lspsn0 20886 . . . . . . 7 (𝑊 ∈ LMod → (𝑁‘{ 0 }) = { 0 })
121, 11syl 17 . . . . . 6 (𝜑 → (𝑁‘{ 0 }) = { 0 })
1312uneq2d 4160 . . . . 5 (𝜑 → ((𝑁𝑋) ∪ (𝑁‘{ 0 })) = ((𝑁𝑋) ∪ { 0 }))
14 eqid 2728 . . . . . . . . 9 (LSubSp‘𝑊) = (LSubSp‘𝑊)
153, 14, 8lspcl 20854 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁𝑋) ∈ (LSubSp‘𝑊))
161, 2, 15syl2anc 583 . . . . . . 7 (𝜑 → (𝑁𝑋) ∈ (LSubSp‘𝑊))
174, 14lss0ss 20827 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝑁𝑋) ∈ (LSubSp‘𝑊)) → { 0 } ⊆ (𝑁𝑋))
181, 16, 17syl2anc 583 . . . . . 6 (𝜑 → { 0 } ⊆ (𝑁𝑋))
19 ssequn2 4180 . . . . . 6 ({ 0 } ⊆ (𝑁𝑋) ↔ ((𝑁𝑋) ∪ { 0 }) = (𝑁𝑋))
2018, 19sylib 217 . . . . 5 (𝜑 → ((𝑁𝑋) ∪ { 0 }) = (𝑁𝑋))
2113, 20eqtrd 2768 . . . 4 (𝜑 → ((𝑁𝑋) ∪ (𝑁‘{ 0 })) = (𝑁𝑋))
2221fveq2d 6896 . . 3 (𝜑 → (𝑁‘((𝑁𝑋) ∪ (𝑁‘{ 0 }))) = (𝑁‘(𝑁𝑋)))
233, 8lspidm 20864 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘(𝑁𝑋)) = (𝑁𝑋))
241, 2, 23syl2anc 583 . . 3 (𝜑 → (𝑁‘(𝑁𝑋)) = (𝑁𝑋))
2522, 24eqtrd 2768 . 2 (𝜑 → (𝑁‘((𝑁𝑋) ∪ (𝑁‘{ 0 }))) = (𝑁𝑋))
2610, 25eqtrd 2768 1 (𝜑 → (𝑁‘(𝑋 ∪ { 0 })) = (𝑁𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  cun 3943  wss 3945  {csn 4625  cfv 6543  Basecbs 17174  0gc0g 17415  LModclmod 20737  LSubSpclss 20809  LSpanclspn 20849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7866  df-1st 7988  df-2nd 7989  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-rdg 8425  df-er 8719  df-en 8959  df-dom 8960  df-sdom 8961  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-2 12300  df-sets 17127  df-slot 17145  df-ndx 17157  df-base 17175  df-plusg 17240  df-0g 17417  df-mgm 18594  df-sgrp 18673  df-mnd 18689  df-grp 18887  df-minusg 18888  df-sbg 18889  df-cmn 19731  df-abl 19732  df-mgp 20069  df-rng 20087  df-ur 20116  df-ring 20169  df-lmod 20739  df-lss 20810  df-lsp 20850
This theorem is referenced by:  dvh4dimN  40915
  Copyright terms: Public domain W3C validator