![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > lnophmlem1 | Structured version Visualization version GIF version |
Description: Lemma for lnophmi 31815. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnophmlem.1 | ⊢ 𝐴 ∈ ℋ |
lnophmlem.2 | ⊢ 𝐵 ∈ ℋ |
lnophmlem.3 | ⊢ 𝑇 ∈ LinOp |
lnophmlem.4 | ⊢ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇‘𝑥)) ∈ ℝ |
Ref | Expression |
---|---|
lnophmlem1 | ⊢ (𝐴 ·ih (𝑇‘𝐴)) ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnophmlem.1 | . 2 ⊢ 𝐴 ∈ ℋ | |
2 | lnophmlem.4 | . 2 ⊢ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇‘𝑥)) ∈ ℝ | |
3 | id 22 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
4 | fveq2 6891 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑇‘𝑥) = (𝑇‘𝐴)) | |
5 | 3, 4 | oveq12d 7432 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ·ih (𝑇‘𝑥)) = (𝐴 ·ih (𝑇‘𝐴))) |
6 | 5 | eleq1d 2813 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ·ih (𝑇‘𝑥)) ∈ ℝ ↔ (𝐴 ·ih (𝑇‘𝐴)) ∈ ℝ)) |
7 | 6 | rspcv 3603 | . 2 ⊢ (𝐴 ∈ ℋ → (∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇‘𝑥)) ∈ ℝ → (𝐴 ·ih (𝑇‘𝐴)) ∈ ℝ)) |
8 | 1, 2, 7 | mp2 9 | 1 ⊢ (𝐴 ·ih (𝑇‘𝐴)) ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 ∀wral 3056 ‘cfv 6542 (class class class)co 7414 ℝcr 11129 ℋchba 30716 ·ih csp 30719 LinOpclo 30744 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ral 3057 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-iota 6494 df-fv 6550 df-ov 7417 |
This theorem is referenced by: lnophmlem2 31814 |
Copyright terms: Public domain | W3C validator |