HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnophmlem1 Structured version   Visualization version   GIF version

Theorem lnophmlem1 31813
Description: Lemma for lnophmi 31815. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnophmlem.1 𝐴 ∈ ℋ
lnophmlem.2 𝐵 ∈ ℋ
lnophmlem.3 𝑇 ∈ LinOp
lnophmlem.4 𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ
Assertion
Ref Expression
lnophmlem1 (𝐴 ·ih (𝑇𝐴)) ∈ ℝ
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑇

Proof of Theorem lnophmlem1
StepHypRef Expression
1 lnophmlem.1 . 2 𝐴 ∈ ℋ
2 lnophmlem.4 . 2 𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ
3 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
4 fveq2 6891 . . . . 5 (𝑥 = 𝐴 → (𝑇𝑥) = (𝑇𝐴))
53, 4oveq12d 7432 . . . 4 (𝑥 = 𝐴 → (𝑥 ·ih (𝑇𝑥)) = (𝐴 ·ih (𝑇𝐴)))
65eleq1d 2813 . . 3 (𝑥 = 𝐴 → ((𝑥 ·ih (𝑇𝑥)) ∈ ℝ ↔ (𝐴 ·ih (𝑇𝐴)) ∈ ℝ))
76rspcv 3603 . 2 (𝐴 ∈ ℋ → (∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ → (𝐴 ·ih (𝑇𝐴)) ∈ ℝ))
81, 2, 7mp2 9 1 (𝐴 ·ih (𝑇𝐴)) ∈ ℝ
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099  wral 3056  cfv 6542  (class class class)co 7414  cr 11129  chba 30716   ·ih csp 30719  LinOpclo 30744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-ral 3057  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-iota 6494  df-fv 6550  df-ov 7417
This theorem is referenced by:  lnophmlem2  31814
  Copyright terms: Public domain W3C validator