![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > lnopf | Structured version Visualization version GIF version |
Description: A linear Hilbert space operator is a Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnopf | ⊢ (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ellnop 31681 | . 2 ⊢ (𝑇 ∈ LinOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)))) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ∀wral 3058 ⟶wf 6544 ‘cfv 6548 (class class class)co 7420 ℂcc 11137 ℋchba 30742 +ℎ cva 30743 ·ℎ csm 30744 LinOpclo 30770 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-hilex 30822 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-map 8847 df-lnop 31664 |
This theorem is referenced by: bdopf 31685 elbdop2 31694 unopadj2 31761 lnop0 31789 lnopmul 31790 lnopfi 31792 homco2 31800 nmopun 31837 cnlnadjeui 31900 cnlnssadj 31903 |
Copyright terms: Public domain | W3C validator |