![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmieq | Structured version Visualization version GIF version |
Description: Equality deduction for line mirroring. Theorem 10.7 of [Schwabhauser] p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019.) |
Ref | Expression |
---|---|
ismid.p | ⊢ 𝑃 = (Base‘𝐺) |
ismid.d | ⊢ − = (dist‘𝐺) |
ismid.i | ⊢ 𝐼 = (Itv‘𝐺) |
ismid.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
ismid.1 | ⊢ (𝜑 → 𝐺DimTarskiG≥2) |
lmif.m | ⊢ 𝑀 = ((lInvG‘𝐺)‘𝐷) |
lmif.l | ⊢ 𝐿 = (LineG‘𝐺) |
lmif.d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
lmicl.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
lmieq.c | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
lmieq.d | ⊢ (𝜑 → (𝑀‘𝐴) = (𝑀‘𝐵)) |
Ref | Expression |
---|---|
lmieq | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveqeq2 6900 | . 2 ⊢ (𝑏 = 𝐴 → ((𝑀‘𝑏) = (𝑀‘𝐵) ↔ (𝑀‘𝐴) = (𝑀‘𝐵))) | |
2 | fveqeq2 6900 | . 2 ⊢ (𝑏 = 𝐵 → ((𝑀‘𝑏) = (𝑀‘𝐵) ↔ (𝑀‘𝐵) = (𝑀‘𝐵))) | |
3 | ismid.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
4 | ismid.d | . . 3 ⊢ − = (dist‘𝐺) | |
5 | ismid.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
6 | ismid.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
7 | ismid.1 | . . 3 ⊢ (𝜑 → 𝐺DimTarskiG≥2) | |
8 | lmif.m | . . 3 ⊢ 𝑀 = ((lInvG‘𝐺)‘𝐷) | |
9 | lmif.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
10 | lmif.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | |
11 | lmieq.c | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
12 | 3, 4, 5, 6, 7, 8, 9, 10, 11 | lmicl 28583 | . . 3 ⊢ (𝜑 → (𝑀‘𝐵) ∈ 𝑃) |
13 | 3, 4, 5, 6, 7, 8, 9, 10, 12 | lmireu 28587 | . 2 ⊢ (𝜑 → ∃!𝑏 ∈ 𝑃 (𝑀‘𝑏) = (𝑀‘𝐵)) |
14 | lmicl.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
15 | lmieq.d | . 2 ⊢ (𝜑 → (𝑀‘𝐴) = (𝑀‘𝐵)) | |
16 | eqidd 2728 | . 2 ⊢ (𝜑 → (𝑀‘𝐵) = (𝑀‘𝐵)) | |
17 | 1, 2, 13, 14, 11, 15, 16 | reu2eqd 3729 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 class class class wbr 5142 ran crn 5673 ‘cfv 6542 2c2 12291 Basecbs 17173 distcds 17235 TarskiGcstrkg 28224 DimTarskiG≥cstrkgld 28228 Itvcitv 28230 LineGclng 28231 lInvGclmi 28570 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-er 8718 df-map 8840 df-pm 8841 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-dju 9918 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-2 12299 df-3 12300 df-n0 12497 df-xnn0 12569 df-z 12583 df-uz 12847 df-fz 13511 df-fzo 13654 df-hash 14316 df-word 14491 df-concat 14547 df-s1 14572 df-s2 14825 df-s3 14826 df-trkgc 28245 df-trkgb 28246 df-trkgcb 28247 df-trkgld 28249 df-trkg 28250 df-cgrg 28308 df-leg 28380 df-mir 28450 df-rag 28491 df-perpg 28493 df-mid 28571 df-lmi 28572 |
This theorem is referenced by: trgcopyeulem 28602 |
Copyright terms: Public domain | W3C validator |