Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhp2atnle Structured version   Visualization version   GIF version

Theorem lhp2atnle 39443
Description: Inequality for 2 different atoms under co-atom 𝑊. (Contributed by NM, 17-Jun-2013.)
Hypotheses
Ref Expression
lhp2atnle.l = (le‘𝐾)
lhp2atnle.j = (join‘𝐾)
lhp2atnle.a 𝐴 = (Atoms‘𝐾)
lhp2atnle.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhp2atnle ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ¬ 𝑉 (𝑃 𝑈))

Proof of Theorem lhp2atnle
StepHypRef Expression
1 simp11l 1282 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝐾 ∈ HL)
2 hlatl 38769 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
31, 2syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝐾 ∈ AtLat)
4 simp3l 1199 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑉𝐴)
5 eqid 2727 . . . 4 (0.‘𝐾) = (0.‘𝐾)
6 lhp2atnle.a . . . 4 𝐴 = (Atoms‘𝐾)
75, 6atn0 38717 . . 3 ((𝐾 ∈ AtLat ∧ 𝑉𝐴) → 𝑉 ≠ (0.‘𝐾))
83, 4, 7syl2anc 583 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑉 ≠ (0.‘𝐾))
91hllatd 38773 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝐾 ∈ Lat)
10 eqid 2727 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
1110, 6atbase 38698 . . . . . 6 (𝑉𝐴𝑉 ∈ (Base‘𝐾))
124, 11syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑉 ∈ (Base‘𝐾))
13 simp12l 1284 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑃𝐴)
14 simp2l 1197 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑈𝐴)
15 lhp2atnle.j . . . . . . 7 = (join‘𝐾)
1610, 15, 6hlatjcl 38776 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑈𝐴) → (𝑃 𝑈) ∈ (Base‘𝐾))
171, 13, 14, 16syl3anc 1369 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (𝑃 𝑈) ∈ (Base‘𝐾))
18 lhp2atnle.l . . . . . 6 = (le‘𝐾)
19 eqid 2727 . . . . . 6 (meet‘𝐾) = (meet‘𝐾)
2010, 18, 19latleeqm2 18451 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑉 ∈ (Base‘𝐾) ∧ (𝑃 𝑈) ∈ (Base‘𝐾)) → (𝑉 (𝑃 𝑈) ↔ ((𝑃 𝑈)(meet‘𝐾)𝑉) = 𝑉))
219, 12, 17, 20syl3anc 1369 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (𝑉 (𝑃 𝑈) ↔ ((𝑃 𝑈)(meet‘𝐾)𝑉) = 𝑉))
22 lhp2atnle.h . . . . . 6 𝐻 = (LHyp‘𝐾)
2318, 15, 19, 5, 6, 22lhp2at0 39442 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ((𝑃 𝑈)(meet‘𝐾)𝑉) = (0.‘𝐾))
24 eqeq1 2731 . . . . 5 (((𝑃 𝑈)(meet‘𝐾)𝑉) = 𝑉 → (((𝑃 𝑈)(meet‘𝐾)𝑉) = (0.‘𝐾) ↔ 𝑉 = (0.‘𝐾)))
2523, 24syl5ibcom 244 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (((𝑃 𝑈)(meet‘𝐾)𝑉) = 𝑉𝑉 = (0.‘𝐾)))
2621, 25sylbid 239 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (𝑉 (𝑃 𝑈) → 𝑉 = (0.‘𝐾)))
2726necon3ad 2948 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (𝑉 ≠ (0.‘𝐾) → ¬ 𝑉 (𝑃 𝑈)))
288, 27mpd 15 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ¬ 𝑉 (𝑃 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2935   class class class wbr 5142  cfv 6542  (class class class)co 7414  Basecbs 17171  lecple 17231  joincjn 18294  meetcmee 18295  0.cp0 18406  Latclat 18414  Atomscatm 38672  AtLatcal 38673  HLchlt 38759  LHypclh 39394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7987  df-2nd 7988  df-proset 18278  df-poset 18296  df-plt 18313  df-lub 18329  df-glb 18330  df-join 18331  df-meet 18332  df-p0 18408  df-lat 18415  df-clat 18482  df-oposet 38585  df-ol 38587  df-oml 38588  df-covers 38675  df-ats 38676  df-atl 38707  df-cvlat 38731  df-hlat 38760  df-psubsp 38913  df-pmap 38914  df-padd 39206  df-lhyp 39398
This theorem is referenced by:  lhp2atne  39444  lhp2at0nle  39445  cdlemg27a  40102  cdlemg31c  40109  cdlemh  40227  cdlemk12  40260  cdlemk12u  40282
  Copyright terms: Public domain W3C validator