![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lelttr | Structured version Visualization version GIF version |
Description: Transitive law. (Contributed by NM, 23-May-1999.) |
Ref | Expression |
---|---|
lelttr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leloe 11325 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) | |
2 | 1 | 3adant3 1130 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) |
3 | lttr 11315 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
4 | 3 | expd 415 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐵 < 𝐶 → 𝐴 < 𝐶))) |
5 | breq1 5146 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝐴 < 𝐶 ↔ 𝐵 < 𝐶)) | |
6 | 5 | biimprd 247 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐵 < 𝐶 → 𝐴 < 𝐶)) |
7 | 6 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 = 𝐵 → (𝐵 < 𝐶 → 𝐴 < 𝐶))) |
8 | 4, 7 | jaod 858 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵) → (𝐵 < 𝐶 → 𝐴 < 𝐶))) |
9 | 2, 8 | sylbid 239 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 → (𝐵 < 𝐶 → 𝐴 < 𝐶))) |
10 | 9 | impd 410 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 846 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 class class class wbr 5143 ℝcr 11132 < clt 11273 ≤ cle 11274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-resscn 11190 ax-pre-lttri 11207 ax-pre-lttrn 11208 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-er 8719 df-en 8959 df-dom 8960 df-sdom 8961 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 |
This theorem is referenced by: leltletr 11330 letr 11333 lelttri 11366 lelttrd 11397 letrp1 12083 ltmul12a 12095 ledivp1 12141 supmul1 12208 bndndx 12496 uzind 12679 fnn0ind 12686 rpnnen1lem5 12990 xrinfmsslem 13314 elfzo0z 13701 nn0p1elfzo 13702 fzofzim 13706 elfzodifsumelfzo 13725 flge 13797 flflp1 13799 flltdivnn0lt 13825 modfzo0difsn 13935 fsequb 13967 expnlbnd2 14223 ccat2s1fvw 14615 swrdswrd 14682 pfxccatin12lem3 14709 repswswrd 14761 caubnd2 15331 caubnd 15332 mulcn2 15567 cn1lem 15569 rlimo1 15588 o1rlimmul 15590 climsqz 15612 climsqz2 15613 rlimsqzlem 15622 climsup 15643 caucvgrlem2 15648 iseralt 15658 cvgcmp 15789 cvgcmpce 15791 ruclem3 16204 ruclem12 16212 ltoddhalfle 16332 algcvgblem 16542 ncoprmlnprm 16694 pclem 16801 infpn2 16876 gsummoncoe1 22221 mp2pm2mplem4 22705 metss2lem 24414 ngptgp 24539 nghmcn 24656 iocopnst 24858 ovollb2lem 25411 ovolicc2lem4 25443 volcn 25529 ismbf3d 25577 dvcnvrelem1 25944 dvfsumrlim 25960 ulmcn 26329 mtest 26334 logdivlti 26548 isosctrlem1 26744 ftalem2 27000 chtub 27139 bposlem6 27216 gausslemma2dlem2 27294 chtppilim 27402 dchrisumlem3 27418 pntlem3 27536 clwlkclwwlklem2a 29802 vacn 30498 nmcvcn 30499 blocni 30609 chscllem2 31442 lnconi 31837 staddi 32050 stadd3i 32052 ltflcei 37076 poimirlem29 37117 geomcau 37227 heibor1lem 37277 bfplem2 37291 rrncmslem 37300 climinf 44985 zm1nn 46673 iccpartigtl 46754 tgoldbach 47148 ply1mulgsumlem2 47446 difmodm1lt 47586 |
Copyright terms: Public domain | W3C validator |