![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > konigsberglem5 | Structured version Visualization version GIF version |
Description: Lemma 5 for konigsberg 30061: The set of vertices of odd degree is greater than 2. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 28-Feb-2021.) |
Ref | Expression |
---|---|
konigsberg.v | ⊢ 𝑉 = (0...3) |
konigsberg.e | ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 |
konigsberg.g | ⊢ 𝐺 = 〈𝑉, 𝐸〉 |
Ref | Expression |
---|---|
konigsberglem5 | ⊢ 2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | konigsberg.v | . . 3 ⊢ 𝑉 = (0...3) | |
2 | konigsberg.e | . . 3 ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 | |
3 | konigsberg.g | . . 3 ⊢ 𝐺 = 〈𝑉, 𝐸〉 | |
4 | 1, 2, 3 | konigsberglem4 30059 | . 2 ⊢ {0, 1, 3} ⊆ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} |
5 | 1 | ovexi 7449 | . . . 4 ⊢ 𝑉 ∈ V |
6 | 5 | rabex 5329 | . . 3 ⊢ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∈ V |
7 | hashss 14395 | . . 3 ⊢ (({𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∈ V ∧ {0, 1, 3} ⊆ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) → (♯‘{0, 1, 3}) ≤ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})) | |
8 | 6, 7 | mpan 689 | . 2 ⊢ ({0, 1, 3} ⊆ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} → (♯‘{0, 1, 3}) ≤ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})) |
9 | 0ne1 12308 | . . . . . 6 ⊢ 0 ≠ 1 | |
10 | 1re 11239 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
11 | 1lt3 12410 | . . . . . . 7 ⊢ 1 < 3 | |
12 | 10, 11 | ltneii 11352 | . . . . . 6 ⊢ 1 ≠ 3 |
13 | 3ne0 12343 | . . . . . 6 ⊢ 3 ≠ 0 | |
14 | 9, 12, 13 | 3pm3.2i 1337 | . . . . 5 ⊢ (0 ≠ 1 ∧ 1 ≠ 3 ∧ 3 ≠ 0) |
15 | c0ex 11233 | . . . . . 6 ⊢ 0 ∈ V | |
16 | 1ex 11235 | . . . . . 6 ⊢ 1 ∈ V | |
17 | 3ex 12319 | . . . . . 6 ⊢ 3 ∈ V | |
18 | hashtpg 14473 | . . . . . 6 ⊢ ((0 ∈ V ∧ 1 ∈ V ∧ 3 ∈ V) → ((0 ≠ 1 ∧ 1 ≠ 3 ∧ 3 ≠ 0) ↔ (♯‘{0, 1, 3}) = 3)) | |
19 | 15, 16, 17, 18 | mp3an 1458 | . . . . 5 ⊢ ((0 ≠ 1 ∧ 1 ≠ 3 ∧ 3 ≠ 0) ↔ (♯‘{0, 1, 3}) = 3) |
20 | 14, 19 | mpbi 229 | . . . 4 ⊢ (♯‘{0, 1, 3}) = 3 |
21 | 20 | breq1i 5150 | . . 3 ⊢ ((♯‘{0, 1, 3}) ≤ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ 3 ≤ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})) |
22 | df-3 12301 | . . . . 5 ⊢ 3 = (2 + 1) | |
23 | 22 | breq1i 5150 | . . . 4 ⊢ (3 ≤ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ (2 + 1) ≤ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})) |
24 | 2z 12619 | . . . . 5 ⊢ 2 ∈ ℤ | |
25 | fzfi 13964 | . . . . . . . 8 ⊢ (0...3) ∈ Fin | |
26 | 1, 25 | eqeltri 2825 | . . . . . . 7 ⊢ 𝑉 ∈ Fin |
27 | rabfi 9288 | . . . . . . 7 ⊢ (𝑉 ∈ Fin → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∈ Fin) | |
28 | hashcl 14342 | . . . . . . 7 ⊢ ({𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∈ Fin → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ ℕ0) | |
29 | 26, 27, 28 | mp2b 10 | . . . . . 6 ⊢ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ ℕ0 |
30 | 29 | nn0zi 12612 | . . . . 5 ⊢ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ ℤ |
31 | zltp1le 12637 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ ℤ) → (2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ (2 + 1) ≤ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}))) | |
32 | 24, 30, 31 | mp2an 691 | . . . 4 ⊢ (2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ (2 + 1) ≤ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})) |
33 | 23, 32 | sylbb2 237 | . . 3 ⊢ (3 ≤ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) → 2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})) |
34 | 21, 33 | sylbi 216 | . 2 ⊢ ((♯‘{0, 1, 3}) ≤ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) → 2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})) |
35 | 4, 8, 34 | mp2b 10 | 1 ⊢ 2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ≠ wne 2936 {crab 3428 Vcvv 3470 ⊆ wss 3945 {cpr 4627 {ctp 4629 〈cop 4631 class class class wbr 5143 ‘cfv 6543 (class class class)co 7415 Fincfn 8958 0cc0 11133 1c1 11134 + caddc 11136 < clt 11273 ≤ cle 11274 2c2 12292 3c3 12293 ℕ0cn0 12497 ℤcz 12583 ...cfz 13511 ♯chash 14316 〈“cs7 14824 ∥ cdvds 16225 VtxDegcvtxdg 29273 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7866 df-1st 7988 df-2nd 7989 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-1o 8481 df-oadd 8485 df-er 8719 df-en 8959 df-dom 8960 df-sdom 8961 df-fin 8962 df-dju 9919 df-card 9957 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-div 11897 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-n0 12498 df-xnn0 12570 df-z 12584 df-uz 12848 df-xadd 13120 df-fz 13512 df-fzo 13655 df-hash 14317 df-word 14492 df-concat 14548 df-s1 14573 df-s2 14826 df-s3 14827 df-s4 14828 df-s5 14829 df-s6 14830 df-s7 14831 df-dvds 16226 df-vtx 28805 df-iedg 28806 df-vtxdg 29274 |
This theorem is referenced by: konigsberg 30061 |
Copyright terms: Public domain | W3C validator |