![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jao1i | Structured version Visualization version GIF version |
Description: Add a disjunct in the antecedent of an implication. (Contributed by Rodolfo Medina, 24-Sep-2010.) |
Ref | Expression |
---|---|
jao1i.1 | ⊢ (𝜓 → (𝜒 → 𝜑)) |
Ref | Expression |
---|---|
jao1i | ⊢ ((𝜑 ∨ 𝜓) → (𝜒 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . 2 ⊢ (𝜑 → (𝜒 → 𝜑)) | |
2 | jao1i.1 | . 2 ⊢ (𝜓 → (𝜒 → 𝜑)) | |
3 | 1, 2 | jaoi 855 | 1 ⊢ ((𝜑 ∨ 𝜓) → (𝜒 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 846 |
This theorem is referenced by: pm2.64 939 pm2.82 973 sorpssint 7742 preleqg 9644 ltlen 11351 elnnnn0b 12552 znnn0nn 12709 scshwfzeqfzo 14815 nn0enne 16359 dvdsprmpweqnn 16859 dvdsprmpweqle 16860 prmirred 21405 pmatcollpw3fi1 22708 2lgsoddprmlem3 27365 sltlend 27722 prtlem14 38350 |
Copyright terms: Public domain | W3C validator |