![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ixi | Structured version Visualization version GIF version |
Description: i times itself is minus 1. (Contributed by NM, 6-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
Ref | Expression |
---|---|
ixi | ⊢ (i · i) = -1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-neg 11477 | . 2 ⊢ -1 = (0 − 1) | |
2 | ax-i2m1 11206 | . . 3 ⊢ ((i · i) + 1) = 0 | |
3 | 0cn 11236 | . . . 4 ⊢ 0 ∈ ℂ | |
4 | ax-1cn 11196 | . . . 4 ⊢ 1 ∈ ℂ | |
5 | ax-icn 11197 | . . . . 5 ⊢ i ∈ ℂ | |
6 | 5, 5 | mulcli 11251 | . . . 4 ⊢ (i · i) ∈ ℂ |
7 | 3, 4, 6 | subadd2i 11578 | . . 3 ⊢ ((0 − 1) = (i · i) ↔ ((i · i) + 1) = 0) |
8 | 2, 7 | mpbir 230 | . 2 ⊢ (0 − 1) = (i · i) |
9 | 1, 8 | eqtr2i 2757 | 1 ⊢ (i · i) = -1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 (class class class)co 7420 0cc0 11138 1c1 11139 ici 11140 + caddc 11141 · cmul 11143 − cmin 11474 -cneg 11475 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-er 8724 df-en 8964 df-dom 8965 df-sdom 8966 df-pnf 11280 df-mnf 11281 df-ltxr 11283 df-sub 11476 df-neg 11477 |
This theorem is referenced by: recextlem1 11874 inelr 12232 cju 12238 irec 14196 i2 14197 crre 15093 remim 15096 remullem 15107 sqrtneglem 15245 absi 15265 sinhval 16130 coshval 16131 cosadd 16141 absefib 16174 efieq1re 16175 demoivreALT 16177 ncvspi 25083 cphipval2 25168 itgmulc2 25762 tanarg 26552 atandm2 26808 efiasin 26819 asinsinlem 26822 asinsin 26823 asin1 26825 efiatan 26843 atanlogsublem 26846 efiatan2 26848 2efiatan 26849 tanatan 26850 atantan 26854 atans2 26862 dvatan 26866 log2cnv 26875 nvpi 30476 ipasslem10 30648 polid2i 30966 lnophmlem2 31826 1nei 32518 iexpire 35329 itgmulc2nc 37161 dvasin 37177 sqrtcval 43071 |
Copyright terms: Public domain | W3C validator |