![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ispointN | Structured version Visualization version GIF version |
Description: The predicate "is a point". (Contributed by NM, 2-Oct-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ispoint.a | ⊢ 𝐴 = (Atoms‘𝐾) |
ispoint.p | ⊢ 𝑃 = (Points‘𝐾) |
Ref | Expression |
---|---|
ispointN | ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑃 ↔ ∃𝑎 ∈ 𝐴 𝑋 = {𝑎})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ispoint.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
2 | ispoint.p | . . . 4 ⊢ 𝑃 = (Points‘𝐾) | |
3 | 1, 2 | pointsetN 39151 | . . 3 ⊢ (𝐾 ∈ 𝐷 → 𝑃 = {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = {𝑎}}) |
4 | 3 | eleq2d 2814 | . 2 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑃 ↔ 𝑋 ∈ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = {𝑎}})) |
5 | vsnex 5425 | . . . . 5 ⊢ {𝑎} ∈ V | |
6 | eleq1 2816 | . . . . 5 ⊢ (𝑋 = {𝑎} → (𝑋 ∈ V ↔ {𝑎} ∈ V)) | |
7 | 5, 6 | mpbiri 258 | . . . 4 ⊢ (𝑋 = {𝑎} → 𝑋 ∈ V) |
8 | 7 | rexlimivw 3146 | . . 3 ⊢ (∃𝑎 ∈ 𝐴 𝑋 = {𝑎} → 𝑋 ∈ V) |
9 | eqeq1 2731 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 = {𝑎} ↔ 𝑋 = {𝑎})) | |
10 | 9 | rexbidv 3173 | . . 3 ⊢ (𝑥 = 𝑋 → (∃𝑎 ∈ 𝐴 𝑥 = {𝑎} ↔ ∃𝑎 ∈ 𝐴 𝑋 = {𝑎})) |
11 | 8, 10 | elab3 3673 | . 2 ⊢ (𝑋 ∈ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = {𝑎}} ↔ ∃𝑎 ∈ 𝐴 𝑋 = {𝑎}) |
12 | 4, 11 | bitrdi 287 | 1 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑃 ↔ ∃𝑎 ∈ 𝐴 𝑋 = {𝑎})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1534 ∈ wcel 2099 {cab 2704 ∃wrex 3065 Vcvv 3469 {csn 4624 ‘cfv 6542 Atomscatm 38672 PointscpointsN 38905 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-iota 6494 df-fun 6544 df-fv 6550 df-pointsN 38912 |
This theorem is referenced by: atpointN 39153 pointpsubN 39161 |
Copyright terms: Public domain | W3C validator |