Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispointN Structured version   Visualization version   GIF version

Theorem ispointN 39152
Description: The predicate "is a point". (Contributed by NM, 2-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
ispoint.a 𝐴 = (Atoms‘𝐾)
ispoint.p 𝑃 = (Points‘𝐾)
Assertion
Ref Expression
ispointN (𝐾𝐷 → (𝑋𝑃 ↔ ∃𝑎𝐴 𝑋 = {𝑎}))
Distinct variable groups:   𝐴,𝑎   𝑋,𝑎
Allowed substitution hints:   𝐷(𝑎)   𝑃(𝑎)   𝐾(𝑎)

Proof of Theorem ispointN
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ispoint.a . . . 4 𝐴 = (Atoms‘𝐾)
2 ispoint.p . . . 4 𝑃 = (Points‘𝐾)
31, 2pointsetN 39151 . . 3 (𝐾𝐷𝑃 = {𝑥 ∣ ∃𝑎𝐴 𝑥 = {𝑎}})
43eleq2d 2814 . 2 (𝐾𝐷 → (𝑋𝑃𝑋 ∈ {𝑥 ∣ ∃𝑎𝐴 𝑥 = {𝑎}}))
5 vsnex 5425 . . . . 5 {𝑎} ∈ V
6 eleq1 2816 . . . . 5 (𝑋 = {𝑎} → (𝑋 ∈ V ↔ {𝑎} ∈ V))
75, 6mpbiri 258 . . . 4 (𝑋 = {𝑎} → 𝑋 ∈ V)
87rexlimivw 3146 . . 3 (∃𝑎𝐴 𝑋 = {𝑎} → 𝑋 ∈ V)
9 eqeq1 2731 . . . 4 (𝑥 = 𝑋 → (𝑥 = {𝑎} ↔ 𝑋 = {𝑎}))
109rexbidv 3173 . . 3 (𝑥 = 𝑋 → (∃𝑎𝐴 𝑥 = {𝑎} ↔ ∃𝑎𝐴 𝑋 = {𝑎}))
118, 10elab3 3673 . 2 (𝑋 ∈ {𝑥 ∣ ∃𝑎𝐴 𝑥 = {𝑎}} ↔ ∃𝑎𝐴 𝑋 = {𝑎})
124, 11bitrdi 287 1 (𝐾𝐷 → (𝑋𝑃 ↔ ∃𝑎𝐴 𝑋 = {𝑎}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1534  wcel 2099  {cab 2704  wrex 3065  Vcvv 3469  {csn 4624  cfv 6542  Atomscatm 38672  PointscpointsN 38905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-iota 6494  df-fun 6544  df-fv 6550  df-pointsN 38912
This theorem is referenced by:  atpointN  39153  pointpsubN  39161
  Copyright terms: Public domain W3C validator