MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isinv Structured version   Visualization version   GIF version

Theorem isinv 17737
Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b 𝐵 = (Base‘𝐶)
invfval.n 𝑁 = (Inv‘𝐶)
invfval.c (𝜑𝐶 ∈ Cat)
invfval.x (𝜑𝑋𝐵)
invfval.y (𝜑𝑌𝐵)
invfval.s 𝑆 = (Sect‘𝐶)
Assertion
Ref Expression
isinv (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺𝐺(𝑌𝑆𝑋)𝐹)))

Proof of Theorem isinv
StepHypRef Expression
1 invfval.b . . . . 5 𝐵 = (Base‘𝐶)
2 invfval.n . . . . 5 𝑁 = (Inv‘𝐶)
3 invfval.c . . . . 5 (𝜑𝐶 ∈ Cat)
4 invfval.x . . . . 5 (𝜑𝑋𝐵)
5 invfval.y . . . . 5 (𝜑𝑌𝐵)
6 invfval.s . . . . 5 𝑆 = (Sect‘𝐶)
71, 2, 3, 4, 5, 6invfval 17736 . . . 4 (𝜑 → (𝑋𝑁𝑌) = ((𝑋𝑆𝑌) ∩ (𝑌𝑆𝑋)))
87breqd 5154 . . 3 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺𝐹((𝑋𝑆𝑌) ∩ (𝑌𝑆𝑋))𝐺))
9 brin 5195 . . 3 (𝐹((𝑋𝑆𝑌) ∩ (𝑌𝑆𝑋))𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺𝐹(𝑌𝑆𝑋)𝐺))
108, 9bitrdi 287 . 2 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺𝐹(𝑌𝑆𝑋)𝐺)))
11 eqid 2728 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
12 eqid 2728 . . . . . 6 (comp‘𝐶) = (comp‘𝐶)
13 eqid 2728 . . . . . 6 (Id‘𝐶) = (Id‘𝐶)
141, 11, 12, 13, 6, 3, 5, 4sectss 17729 . . . . 5 (𝜑 → (𝑌𝑆𝑋) ⊆ ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)))
15 relxp 5691 . . . . 5 Rel ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌))
16 relss 5778 . . . . 5 ((𝑌𝑆𝑋) ⊆ ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) → (Rel ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) → Rel (𝑌𝑆𝑋)))
1714, 15, 16mpisyl 21 . . . 4 (𝜑 → Rel (𝑌𝑆𝑋))
18 relbrcnvg 6104 . . . 4 (Rel (𝑌𝑆𝑋) → (𝐹(𝑌𝑆𝑋)𝐺𝐺(𝑌𝑆𝑋)𝐹))
1917, 18syl 17 . . 3 (𝜑 → (𝐹(𝑌𝑆𝑋)𝐺𝐺(𝑌𝑆𝑋)𝐹))
2019anbi2d 629 . 2 (𝜑 → ((𝐹(𝑋𝑆𝑌)𝐺𝐹(𝑌𝑆𝑋)𝐺) ↔ (𝐹(𝑋𝑆𝑌)𝐺𝐺(𝑌𝑆𝑋)𝐹)))
2110, 20bitrd 279 1 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺𝐺(𝑌𝑆𝑋)𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  cin 3944  wss 3945   class class class wbr 5143   × cxp 5671  ccnv 5672  Rel wrel 5678  cfv 6543  (class class class)co 7415  Basecbs 17174  Hom chom 17238  compcco 17239  Catccat 17638  Idccid 17639  Sectcsect 17721  Invcinv 17722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7418  df-oprab 7419  df-mpo 7420  df-1st 7988  df-2nd 7989  df-sect 17724  df-inv 17725
This theorem is referenced by:  invsym  17739  invfun  17741  invco  17748  inveq  17751  monsect  17760  invid  17764  invcoisoid  17769  isocoinvid  17770  funcinv  17853  fthinv  17909  fucinv  17959  invfuc  17960  2initoinv  17993  2termoinv  18000  setcinv  18073  catcisolem  18093  catciso  18094  rngcinv  20564  ringcinv  20598  rngcinvALTV  47329  ringcinvALTV  47363  thincinv  48056
  Copyright terms: Public domain W3C validator