![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isi1f | Structured version Visualization version GIF version |
Description: The predicate "𝐹 is a simple function". A simple function is a finite nonnegative linear combination of indicator functions for finitely measurable sets. We use the idiom 𝐹 ∈ dom ∫1 to represent this concept because ∫1 is the first preparation function for our final definition ∫ (see df-itg 25539); unlike that operator, which can integrate any function, this operator can only integrate simple functions. (Contributed by Mario Carneiro, 18-Jun-2014.) |
Ref | Expression |
---|---|
isi1f | ⊢ (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq1 6697 | . . 3 ⊢ (𝑔 = 𝐹 → (𝑔:ℝ⟶ℝ ↔ 𝐹:ℝ⟶ℝ)) | |
2 | rneq 5932 | . . . 4 ⊢ (𝑔 = 𝐹 → ran 𝑔 = ran 𝐹) | |
3 | 2 | eleq1d 2813 | . . 3 ⊢ (𝑔 = 𝐹 → (ran 𝑔 ∈ Fin ↔ ran 𝐹 ∈ Fin)) |
4 | cnveq 5870 | . . . . . 6 ⊢ (𝑔 = 𝐹 → ◡𝑔 = ◡𝐹) | |
5 | 4 | imaeq1d 6056 | . . . . 5 ⊢ (𝑔 = 𝐹 → (◡𝑔 “ (ℝ ∖ {0})) = (◡𝐹 “ (ℝ ∖ {0}))) |
6 | 5 | fveq2d 6895 | . . . 4 ⊢ (𝑔 = 𝐹 → (vol‘(◡𝑔 “ (ℝ ∖ {0}))) = (vol‘(◡𝐹 “ (ℝ ∖ {0})))) |
7 | 6 | eleq1d 2813 | . . 3 ⊢ (𝑔 = 𝐹 → ((vol‘(◡𝑔 “ (ℝ ∖ {0}))) ∈ ℝ ↔ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)) |
8 | 1, 3, 7 | 3anbi123d 1433 | . 2 ⊢ (𝑔 = 𝐹 → ((𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(◡𝑔 “ (ℝ ∖ {0}))) ∈ ℝ) ↔ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))) |
9 | sumex 15658 | . . 3 ⊢ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(◡𝑓 “ {𝑥}))) ∈ V | |
10 | df-itg1 25536 | . . 3 ⊢ ∫1 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(◡𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(◡𝑓 “ {𝑥})))) | |
11 | 9, 10 | dmmpti 6693 | . 2 ⊢ dom ∫1 = {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(◡𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} |
12 | 8, 11 | elrab2 3683 | 1 ⊢ (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 {crab 3427 ∖ cdif 3941 {csn 4624 ◡ccnv 5671 dom cdm 5672 ran crn 5673 “ cima 5675 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 Fincfn 8955 ℝcr 11129 0cc0 11130 · cmul 11135 Σcsu 15656 volcvol 25379 MblFncmbf 25530 ∫1citg1 25531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-sum 15657 df-itg1 25536 |
This theorem is referenced by: i1fmbf 25591 i1ff 25592 i1frn 25593 i1fima2 25595 i1fd 25597 |
Copyright terms: Public domain | W3C validator |