![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ioorval | Structured version Visualization version GIF version |
Description: Define a function from open intervals to their endpoints. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.) |
Ref | Expression |
---|---|
ioorf.1 | ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) |
Ref | Expression |
---|---|
ioorval | ⊢ (𝐴 ∈ ran (,) → (𝐹‘𝐴) = if(𝐴 = ∅, 〈0, 0〉, 〈inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2731 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = ∅ ↔ 𝐴 = ∅)) | |
2 | infeq1 9491 | . . . 4 ⊢ (𝑥 = 𝐴 → inf(𝑥, ℝ*, < ) = inf(𝐴, ℝ*, < )) | |
3 | supeq1 9460 | . . . 4 ⊢ (𝑥 = 𝐴 → sup(𝑥, ℝ*, < ) = sup(𝐴, ℝ*, < )) | |
4 | 2, 3 | opeq12d 4877 | . . 3 ⊢ (𝑥 = 𝐴 → 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉 = 〈inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )〉) |
5 | 1, 4 | ifbieq2d 4550 | . 2 ⊢ (𝑥 = 𝐴 → if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉) = if(𝐴 = ∅, 〈0, 0〉, 〈inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )〉)) |
6 | ioorf.1 | . 2 ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) | |
7 | opex 5460 | . . 3 ⊢ 〈0, 0〉 ∈ V | |
8 | opex 5460 | . . 3 ⊢ 〈inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )〉 ∈ V | |
9 | 7, 8 | ifex 4574 | . 2 ⊢ if(𝐴 = ∅, 〈0, 0〉, 〈inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )〉) ∈ V |
10 | 5, 6, 9 | fvmpt 6999 | 1 ⊢ (𝐴 ∈ ran (,) → (𝐹‘𝐴) = if(𝐴 = ∅, 〈0, 0〉, 〈inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ∅c0 4318 ifcif 4524 〈cop 4630 ↦ cmpt 5225 ran crn 5673 ‘cfv 6542 supcsup 9455 infcinf 9456 0cc0 11130 ℝ*cxr 11269 < clt 11270 (,)cioo 13348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-iota 6494 df-fun 6544 df-fv 6550 df-sup 9457 df-inf 9458 |
This theorem is referenced by: ioorinv2 25491 ioorinv 25492 ioorcl 25493 |
Copyright terms: Public domain | W3C validator |