![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intnan | Structured version Visualization version GIF version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 16-Sep-1993.) |
Ref | Expression |
---|---|
intnan.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
intnan | ⊢ ¬ (𝜓 ∧ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnan.1 | . 2 ⊢ ¬ 𝜑 | |
2 | simpr 484 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜑) | |
3 | 1, 2 | mto 196 | 1 ⊢ ¬ (𝜓 ∧ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: bianfi 533 indifdirOLD 4286 noel 4331 noelOLD 4332 axnulALT 5304 axnul 5305 cnv0 6145 imadif 6637 poxp3 8155 xrltnr 13132 nltmnf 13142 0nelfz1 13553 smu01 16461 3lcm2e6woprm 16586 6lcm4e12 16587 join0 18397 meet0 18398 nsmndex1 18865 smndex2dnrinv 18867 zringndrg 21394 zclmncvs 25089 nolt02o 27641 nogt01o 27642 legso 28416 rgrx0ndm 29420 wwlksnext 29717 ntrl2v2e 29981 avril1 30286 helloworld 30288 topnfbey 30292 xrge00 32755 fmlaomn0 35000 gonan0 35002 goaln0 35003 prv0 35040 dfon2lem7 35385 nandsym1 35906 bj-inftyexpitaudisj 36684 padd01 39284 ifpdfan 42896 sucomisnotcard 42974 clsk1indlem4 43474 iblempty 45353 salexct2 45727 0nodd 47232 2nodd 47234 1neven 47300 ipolub00 48004 |
Copyright terms: Public domain | W3C validator |