![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imp42 | Structured version Visualization version GIF version |
Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
imp42 | ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒)) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | imp32 418 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → (𝜃 → 𝜏)) |
3 | 2 | imp 406 | 1 ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒)) ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: imp55 442 ltexprlem7 11059 iscatd 17646 isposd 18308 pospropd 18312 mulgghm2 21395 ordtbaslem 23085 txbas 23464 nocvxminlem 27703 frgrncvvdeqlem8 30109 grporcan 30321 chirredlem1 32193 cvxpconn 34846 cvxsconn 34847 rngonegmn1l 37408 prnc 37534 reuopreuprim 46860 |
Copyright terms: Public domain | W3C validator |