![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imasf1obl | Structured version Visualization version GIF version |
Description: The image of a metric space ball. (Contributed by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
imasf1obl.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
imasf1obl.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
imasf1obl.f | ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) |
imasf1obl.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
imasf1obl.e | ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) |
imasf1obl.d | ⊢ 𝐷 = (dist‘𝑈) |
imasf1obl.m | ⊢ (𝜑 → 𝐸 ∈ (∞Met‘𝑉)) |
imasf1obl.x | ⊢ (𝜑 → 𝑃 ∈ 𝑉) |
imasf1obl.s | ⊢ (𝜑 → 𝑆 ∈ ℝ*) |
Ref | Expression |
---|---|
imasf1obl | ⊢ (𝜑 → ((𝐹‘𝑃)(ball‘𝐷)𝑆) = (𝐹 “ (𝑃(ball‘𝐸)𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imasf1obl.f | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) | |
2 | f1ocnvfv2 7281 | . . . . . . . . . 10 ⊢ ((𝐹:𝑉–1-1-onto→𝐵 ∧ 𝑥 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝑥)) = 𝑥) | |
3 | 1, 2 | sylan 579 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝑥)) = 𝑥) |
4 | 3 | oveq2d 7431 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝐹‘𝑃)𝐷(𝐹‘(◡𝐹‘𝑥))) = ((𝐹‘𝑃)𝐷𝑥)) |
5 | imasf1obl.u | . . . . . . . . . 10 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
6 | 5 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑈 = (𝐹 “s 𝑅)) |
7 | imasf1obl.v | . . . . . . . . . 10 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
8 | 7 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑉 = (Base‘𝑅)) |
9 | 1 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐹:𝑉–1-1-onto→𝐵) |
10 | imasf1obl.r | . . . . . . . . . 10 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
11 | 10 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑅 ∈ 𝑍) |
12 | imasf1obl.e | . . . . . . . . 9 ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) | |
13 | imasf1obl.d | . . . . . . . . 9 ⊢ 𝐷 = (dist‘𝑈) | |
14 | imasf1obl.m | . . . . . . . . . 10 ⊢ (𝜑 → 𝐸 ∈ (∞Met‘𝑉)) | |
15 | 14 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐸 ∈ (∞Met‘𝑉)) |
16 | imasf1obl.x | . . . . . . . . . 10 ⊢ (𝜑 → 𝑃 ∈ 𝑉) | |
17 | 16 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑃 ∈ 𝑉) |
18 | f1ocnv 6846 | . . . . . . . . . . . 12 ⊢ (𝐹:𝑉–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝑉) | |
19 | 1, 18 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → ◡𝐹:𝐵–1-1-onto→𝑉) |
20 | f1of 6834 | . . . . . . . . . . 11 ⊢ (◡𝐹:𝐵–1-1-onto→𝑉 → ◡𝐹:𝐵⟶𝑉) | |
21 | 19, 20 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → ◡𝐹:𝐵⟶𝑉) |
22 | 21 | ffvelcdmda 7089 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (◡𝐹‘𝑥) ∈ 𝑉) |
23 | 6, 8, 9, 11, 12, 13, 15, 17, 22 | imasdsf1o 24274 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝐹‘𝑃)𝐷(𝐹‘(◡𝐹‘𝑥))) = (𝑃𝐸(◡𝐹‘𝑥))) |
24 | 4, 23 | eqtr3d 2770 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝐹‘𝑃)𝐷𝑥) = (𝑃𝐸(◡𝐹‘𝑥))) |
25 | 24 | breq1d 5153 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (((𝐹‘𝑃)𝐷𝑥) < 𝑆 ↔ (𝑃𝐸(◡𝐹‘𝑥)) < 𝑆)) |
26 | imasf1obl.s | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ ℝ*) | |
27 | 26 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑆 ∈ ℝ*) |
28 | elbl2 24290 | . . . . . . 7 ⊢ (((𝐸 ∈ (∞Met‘𝑉) ∧ 𝑆 ∈ ℝ*) ∧ (𝑃 ∈ 𝑉 ∧ (◡𝐹‘𝑥) ∈ 𝑉)) → ((◡𝐹‘𝑥) ∈ (𝑃(ball‘𝐸)𝑆) ↔ (𝑃𝐸(◡𝐹‘𝑥)) < 𝑆)) | |
29 | 15, 27, 17, 22, 28 | syl22anc 838 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((◡𝐹‘𝑥) ∈ (𝑃(ball‘𝐸)𝑆) ↔ (𝑃𝐸(◡𝐹‘𝑥)) < 𝑆)) |
30 | 25, 29 | bitr4d 282 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (((𝐹‘𝑃)𝐷𝑥) < 𝑆 ↔ (◡𝐹‘𝑥) ∈ (𝑃(ball‘𝐸)𝑆))) |
31 | 30 | pm5.32da 578 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ∧ ((𝐹‘𝑃)𝐷𝑥) < 𝑆) ↔ (𝑥 ∈ 𝐵 ∧ (◡𝐹‘𝑥) ∈ (𝑃(ball‘𝐸)𝑆)))) |
32 | 5, 7, 1, 10, 12, 13, 14 | imasf1oxmet 24275 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝐵)) |
33 | f1of 6834 | . . . . . . 7 ⊢ (𝐹:𝑉–1-1-onto→𝐵 → 𝐹:𝑉⟶𝐵) | |
34 | 1, 33 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑉⟶𝐵) |
35 | 34, 16 | ffvelcdmd 7090 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝑃) ∈ 𝐵) |
36 | elbl 24288 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝐵) ∧ (𝐹‘𝑃) ∈ 𝐵 ∧ 𝑆 ∈ ℝ*) → (𝑥 ∈ ((𝐹‘𝑃)(ball‘𝐷)𝑆) ↔ (𝑥 ∈ 𝐵 ∧ ((𝐹‘𝑃)𝐷𝑥) < 𝑆))) | |
37 | 32, 35, 26, 36 | syl3anc 1369 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ((𝐹‘𝑃)(ball‘𝐷)𝑆) ↔ (𝑥 ∈ 𝐵 ∧ ((𝐹‘𝑃)𝐷𝑥) < 𝑆))) |
38 | f1ofn 6835 | . . . . 5 ⊢ (◡𝐹:𝐵–1-1-onto→𝑉 → ◡𝐹 Fn 𝐵) | |
39 | elpreima 7062 | . . . . 5 ⊢ (◡𝐹 Fn 𝐵 → (𝑥 ∈ (◡◡𝐹 “ (𝑃(ball‘𝐸)𝑆)) ↔ (𝑥 ∈ 𝐵 ∧ (◡𝐹‘𝑥) ∈ (𝑃(ball‘𝐸)𝑆)))) | |
40 | 19, 38, 39 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (◡◡𝐹 “ (𝑃(ball‘𝐸)𝑆)) ↔ (𝑥 ∈ 𝐵 ∧ (◡𝐹‘𝑥) ∈ (𝑃(ball‘𝐸)𝑆)))) |
41 | 31, 37, 40 | 3bitr4d 311 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ((𝐹‘𝑃)(ball‘𝐷)𝑆) ↔ 𝑥 ∈ (◡◡𝐹 “ (𝑃(ball‘𝐸)𝑆)))) |
42 | 41 | eqrdv 2726 | . 2 ⊢ (𝜑 → ((𝐹‘𝑃)(ball‘𝐷)𝑆) = (◡◡𝐹 “ (𝑃(ball‘𝐸)𝑆))) |
43 | imacnvcnv 6205 | . 2 ⊢ (◡◡𝐹 “ (𝑃(ball‘𝐸)𝑆)) = (𝐹 “ (𝑃(ball‘𝐸)𝑆)) | |
44 | 42, 43 | eqtrdi 2784 | 1 ⊢ (𝜑 → ((𝐹‘𝑃)(ball‘𝐷)𝑆) = (𝐹 “ (𝑃(ball‘𝐸)𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 class class class wbr 5143 × cxp 5671 ◡ccnv 5672 ↾ cres 5675 “ cima 5676 Fn wfn 6538 ⟶wf 6539 –1-1-onto→wf1o 6542 ‘cfv 6543 (class class class)co 7415 ℝ*cxr 11272 < clt 11273 Basecbs 17174 distcds 17236 “s cimas 17480 ∞Metcxmet 21258 ballcbl 21260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 ax-pre-sup 11211 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-iin 4995 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-se 5629 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-of 7680 df-om 7866 df-1st 7988 df-2nd 7989 df-supp 8161 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-1o 8481 df-er 8719 df-map 8841 df-en 8959 df-dom 8960 df-sdom 8961 df-fin 8962 df-fsupp 9381 df-sup 9460 df-inf 9461 df-oi 9528 df-card 9957 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-div 11897 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-5 12303 df-6 12304 df-7 12305 df-8 12306 df-9 12307 df-n0 12498 df-z 12584 df-dec 12703 df-uz 12848 df-rp 13002 df-xneg 13119 df-xadd 13120 df-xmul 13121 df-fz 13512 df-fzo 13655 df-seq 13994 df-hash 14317 df-struct 17110 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-ress 17204 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-0g 17417 df-gsum 17418 df-xrs 17478 df-imas 17484 df-mre 17560 df-mrc 17561 df-acs 17563 df-mgm 18594 df-sgrp 18673 df-mnd 18689 df-submnd 18735 df-mulg 19018 df-cntz 19262 df-cmn 19731 df-psmet 21265 df-xmet 21266 df-bl 21268 |
This theorem is referenced by: imasf1oxms 24392 |
Copyright terms: Public domain | W3C validator |