![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iffalsei | Structured version Visualization version GIF version |
Description: Inference associated with iffalse 4538. (Contributed by BJ, 7-Oct-2018.) |
Ref | Expression |
---|---|
iffalsei.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
iffalsei | ⊢ if(𝜑, 𝐴, 𝐵) = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iffalsei.1 | . 2 ⊢ ¬ 𝜑 | |
2 | iffalse 4538 | . 2 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1534 ifcif 4529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-if 4530 |
This theorem is referenced by: ssttrcl 9739 ttrclselem2 9750 sum0 15700 prod0 15920 prmo4 17097 prmo6 17099 itg0 25722 vieta1lem2 26259 right1s 27835 vtxval0 28865 iedgval0 28866 ex-prmo 30282 dfrdg2 35391 dfrdg4 35547 fwddifnp1 35761 bj-pr21val 36492 bj-pr22val 36498 imsqrtvalex 43076 clsk1indlem4 43474 clsk1indlem1 43475 refsum2cnlem1 44399 limsup10ex 45161 iblempty 45353 fouriersw 45619 |
Copyright terms: Public domain | W3C validator |