![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifeqor | Structured version Visualization version GIF version |
Description: The possible values of a conditional operator. (Contributed by NM, 17-Jun-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
ifeqor | ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐴 ∨ if(𝜑, 𝐴, 𝐵) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 4535 | . . . 4 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
2 | 1 | con3i 154 | . . 3 ⊢ (¬ if(𝜑, 𝐴, 𝐵) = 𝐴 → ¬ 𝜑) |
3 | 2 | iffalsed 4540 | . 2 ⊢ (¬ if(𝜑, 𝐴, 𝐵) = 𝐴 → if(𝜑, 𝐴, 𝐵) = 𝐵) |
4 | 3 | orri 861 | 1 ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐴 ∨ if(𝜑, 𝐴, 𝐵) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 846 = wceq 1534 ifcif 4529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-if 4530 |
This theorem is referenced by: ifpr 4696 rabrsn 4729 prmolefac 17015 muval2 27079 abssor 28153 finxpreclem2 36869 relexpxpmin 43147 |
Copyright terms: Public domain | W3C validator |