MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hof2val Structured version   Visualization version   GIF version

Theorem hof2val 18239
Description: The morphism part of the Hom functor, for morphisms 𝑓, 𝑔⟩:⟨𝑋, 𝑌⟩⟶⟨𝑍, 𝑊 (which since the first argument is contravariant means morphisms 𝑓:𝑍𝑋 and 𝑔:𝑌𝑊), yields a function (a morphism of SetCat) mapping :𝑋𝑌 to 𝑔𝑓:𝑍𝑊. (Contributed by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
hofval.m 𝑀 = (HomF𝐶)
hofval.c (𝜑𝐶 ∈ Cat)
hof1.b 𝐵 = (Base‘𝐶)
hof1.h 𝐻 = (Hom ‘𝐶)
hof1.x (𝜑𝑋𝐵)
hof1.y (𝜑𝑌𝐵)
hof2.z (𝜑𝑍𝐵)
hof2.w (𝜑𝑊𝐵)
hof2.o · = (comp‘𝐶)
hof2.f (𝜑𝐹 ∈ (𝑍𝐻𝑋))
hof2.g (𝜑𝐺 ∈ (𝑌𝐻𝑊))
Assertion
Ref Expression
hof2val (𝜑 → (𝐹(⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑍, 𝑊⟩)𝐺) = ( ∈ (𝑋𝐻𝑌) ↦ ((𝐺(⟨𝑋, 𝑌· 𝑊))(⟨𝑍, 𝑋· 𝑊)𝐹)))
Distinct variable groups:   𝐵,   ,𝐹   ,𝐺   𝜑,   𝐶,   ,𝐻   ,𝑊   · ,   ,𝑋   ,𝑌   ,𝑍
Allowed substitution hint:   𝑀()

Proof of Theorem hof2val
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hofval.m . . 3 𝑀 = (HomF𝐶)
2 hofval.c . . 3 (𝜑𝐶 ∈ Cat)
3 hof1.b . . 3 𝐵 = (Base‘𝐶)
4 hof1.h . . 3 𝐻 = (Hom ‘𝐶)
5 hof1.x . . 3 (𝜑𝑋𝐵)
6 hof1.y . . 3 (𝜑𝑌𝐵)
7 hof2.z . . 3 (𝜑𝑍𝐵)
8 hof2.w . . 3 (𝜑𝑊𝐵)
9 hof2.o . . 3 · = (comp‘𝐶)
101, 2, 3, 4, 5, 6, 7, 8, 9hof2fval 18238 . 2 (𝜑 → (⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑍, 𝑊⟩) = (𝑓 ∈ (𝑍𝐻𝑋), 𝑔 ∈ (𝑌𝐻𝑊) ↦ ( ∈ (𝑋𝐻𝑌) ↦ ((𝑔(⟨𝑋, 𝑌· 𝑊))(⟨𝑍, 𝑋· 𝑊)𝑓))))
11 simplrr 777 . . . . 5 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ ∈ (𝑋𝐻𝑌)) → 𝑔 = 𝐺)
1211oveq1d 7429 . . . 4 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ ∈ (𝑋𝐻𝑌)) → (𝑔(⟨𝑋, 𝑌· 𝑊)) = (𝐺(⟨𝑋, 𝑌· 𝑊)))
13 simplrl 776 . . . 4 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ ∈ (𝑋𝐻𝑌)) → 𝑓 = 𝐹)
1412, 13oveq12d 7432 . . 3 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ ∈ (𝑋𝐻𝑌)) → ((𝑔(⟨𝑋, 𝑌· 𝑊))(⟨𝑍, 𝑋· 𝑊)𝑓) = ((𝐺(⟨𝑋, 𝑌· 𝑊))(⟨𝑍, 𝑋· 𝑊)𝐹))
1514mpteq2dva 5242 . 2 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → ( ∈ (𝑋𝐻𝑌) ↦ ((𝑔(⟨𝑋, 𝑌· 𝑊))(⟨𝑍, 𝑋· 𝑊)𝑓)) = ( ∈ (𝑋𝐻𝑌) ↦ ((𝐺(⟨𝑋, 𝑌· 𝑊))(⟨𝑍, 𝑋· 𝑊)𝐹)))
16 hof2.f . 2 (𝜑𝐹 ∈ (𝑍𝐻𝑋))
17 hof2.g . 2 (𝜑𝐺 ∈ (𝑌𝐻𝑊))
18 ovex 7447 . . . 4 (𝑋𝐻𝑌) ∈ V
1918mptex 7229 . . 3 ( ∈ (𝑋𝐻𝑌) ↦ ((𝐺(⟨𝑋, 𝑌· 𝑊))(⟨𝑍, 𝑋· 𝑊)𝐹)) ∈ V
2019a1i 11 . 2 (𝜑 → ( ∈ (𝑋𝐻𝑌) ↦ ((𝐺(⟨𝑋, 𝑌· 𝑊))(⟨𝑍, 𝑋· 𝑊)𝐹)) ∈ V)
2110, 15, 16, 17, 20ovmpod 7567 1 (𝜑 → (𝐹(⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑍, 𝑊⟩)𝐺) = ( ∈ (𝑋𝐻𝑌) ↦ ((𝐺(⟨𝑋, 𝑌· 𝑊))(⟨𝑍, 𝑋· 𝑊)𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  Vcvv 3469  cop 4630  cmpt 5225  cfv 6542  (class class class)co 7414  2nd c2nd 7986  Basecbs 17171  Hom chom 17235  compcco 17236  Catccat 17635  HomFchof 18231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7987  df-2nd 7988  df-hof 18233
This theorem is referenced by:  hof2  18240  hofcllem  18241  hofcl  18242  yonedalem3b  18262
  Copyright terms: Public domain W3C validator