![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap14lem4a | Structured version Visualization version GIF version |
Description: Simplify (𝐴 ∖ {𝑄}) in hdmap14lem3 41347 to provide a slightly simpler definition later. (Contributed by NM, 31-May-2015.) |
Ref | Expression |
---|---|
hdmap14lem1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmap14lem1.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmap14lem1.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmap14lem1.t | ⊢ · = ( ·𝑠 ‘𝑈) |
hdmap14lem3.o | ⊢ 0 = (0g‘𝑈) |
hdmap14lem1.r | ⊢ 𝑅 = (Scalar‘𝑈) |
hdmap14lem1.b | ⊢ 𝐵 = (Base‘𝑅) |
hdmap14lem1.z | ⊢ 𝑍 = (0g‘𝑅) |
hdmap14lem1.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hdmap14lem2.e | ⊢ ∙ = ( ·𝑠 ‘𝐶) |
hdmap14lem1.l | ⊢ 𝐿 = (LSpan‘𝐶) |
hdmap14lem2.p | ⊢ 𝑃 = (Scalar‘𝐶) |
hdmap14lem2.a | ⊢ 𝐴 = (Base‘𝑃) |
hdmap14lem2.q | ⊢ 𝑄 = (0g‘𝑃) |
hdmap14lem1.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
hdmap14lem1.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmap14lem3.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
hdmap14lem1.f | ⊢ (𝜑 → 𝐹 ∈ (𝐵 ∖ {𝑍})) |
Ref | Expression |
---|---|
hdmap14lem4a | ⊢ (𝜑 → (∃!𝑔 ∈ (𝐴 ∖ {𝑄})(𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋)) ↔ ∃!𝑔 ∈ 𝐴 (𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmap14lem1.h | . . . . . . . . 9 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hdmap14lem1.u | . . . . . . . . 9 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | hdmap14lem1.v | . . . . . . . . 9 ⊢ 𝑉 = (Base‘𝑈) | |
4 | hdmap14lem3.o | . . . . . . . . 9 ⊢ 0 = (0g‘𝑈) | |
5 | hdmap14lem1.c | . . . . . . . . 9 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
6 | eqid 2727 | . . . . . . . . 9 ⊢ (0g‘𝐶) = (0g‘𝐶) | |
7 | eqid 2727 | . . . . . . . . 9 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
8 | hdmap14lem1.s | . . . . . . . . 9 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
9 | hdmap14lem1.k | . . . . . . . . 9 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
10 | 1, 2, 9 | dvhlmod 40587 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑈 ∈ LMod) |
11 | hdmap14lem1.f | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐹 ∈ (𝐵 ∖ {𝑍})) | |
12 | 11 | eldifad 3959 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
13 | hdmap14lem3.x | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
14 | 13 | eldifad 3959 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
15 | hdmap14lem1.r | . . . . . . . . . . . 12 ⊢ 𝑅 = (Scalar‘𝑈) | |
16 | hdmap14lem1.t | . . . . . . . . . . . 12 ⊢ · = ( ·𝑠 ‘𝑈) | |
17 | hdmap14lem1.b | . . . . . . . . . . . 12 ⊢ 𝐵 = (Base‘𝑅) | |
18 | 3, 15, 16, 17 | lmodvscl 20766 | . . . . . . . . . . 11 ⊢ ((𝑈 ∈ LMod ∧ 𝐹 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝐹 · 𝑋) ∈ 𝑉) |
19 | 10, 12, 14, 18 | syl3anc 1368 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐹 · 𝑋) ∈ 𝑉) |
20 | eldifsni 4796 | . . . . . . . . . . . 12 ⊢ (𝐹 ∈ (𝐵 ∖ {𝑍}) → 𝐹 ≠ 𝑍) | |
21 | 11, 20 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐹 ≠ 𝑍) |
22 | eldifsni 4796 | . . . . . . . . . . . 12 ⊢ (𝑋 ∈ (𝑉 ∖ { 0 }) → 𝑋 ≠ 0 ) | |
23 | 13, 22 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑋 ≠ 0 ) |
24 | hdmap14lem1.z | . . . . . . . . . . . 12 ⊢ 𝑍 = (0g‘𝑅) | |
25 | 1, 2, 9 | dvhlvec 40586 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑈 ∈ LVec) |
26 | 3, 16, 15, 17, 24, 4, 25, 12, 14 | lvecvsn0 21002 | . . . . . . . . . . 11 ⊢ (𝜑 → ((𝐹 · 𝑋) ≠ 0 ↔ (𝐹 ≠ 𝑍 ∧ 𝑋 ≠ 0 ))) |
27 | 21, 23, 26 | mpbir2and 711 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐹 · 𝑋) ≠ 0 ) |
28 | eldifsn 4793 | . . . . . . . . . 10 ⊢ ((𝐹 · 𝑋) ∈ (𝑉 ∖ { 0 }) ↔ ((𝐹 · 𝑋) ∈ 𝑉 ∧ (𝐹 · 𝑋) ≠ 0 )) | |
29 | 19, 27, 28 | sylanbrc 581 | . . . . . . . . 9 ⊢ (𝜑 → (𝐹 · 𝑋) ∈ (𝑉 ∖ { 0 })) |
30 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 29 | hdmapnzcl 41322 | . . . . . . . 8 ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑋)) ∈ ((Base‘𝐶) ∖ {(0g‘𝐶)})) |
31 | eldifsni 4796 | . . . . . . . 8 ⊢ ((𝑆‘(𝐹 · 𝑋)) ∈ ((Base‘𝐶) ∖ {(0g‘𝐶)}) → (𝑆‘(𝐹 · 𝑋)) ≠ (0g‘𝐶)) | |
32 | 30, 31 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑋)) ≠ (0g‘𝐶)) |
33 | 32 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ {𝑄}) → (𝑆‘(𝐹 · 𝑋)) ≠ (0g‘𝐶)) |
34 | elsni 4647 | . . . . . . . 8 ⊢ (𝑔 ∈ {𝑄} → 𝑔 = 𝑄) | |
35 | 34 | oveq1d 7439 | . . . . . . 7 ⊢ (𝑔 ∈ {𝑄} → (𝑔 ∙ (𝑆‘𝑋)) = (𝑄 ∙ (𝑆‘𝑋))) |
36 | 1, 5, 9 | lcdlmod 41069 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ LMod) |
37 | 1, 2, 3, 5, 7, 8, 9, 14 | hdmapcl 41307 | . . . . . . . 8 ⊢ (𝜑 → (𝑆‘𝑋) ∈ (Base‘𝐶)) |
38 | hdmap14lem2.p | . . . . . . . . 9 ⊢ 𝑃 = (Scalar‘𝐶) | |
39 | hdmap14lem2.e | . . . . . . . . 9 ⊢ ∙ = ( ·𝑠 ‘𝐶) | |
40 | hdmap14lem2.q | . . . . . . . . 9 ⊢ 𝑄 = (0g‘𝑃) | |
41 | 7, 38, 39, 40, 6 | lmod0vs 20783 | . . . . . . . 8 ⊢ ((𝐶 ∈ LMod ∧ (𝑆‘𝑋) ∈ (Base‘𝐶)) → (𝑄 ∙ (𝑆‘𝑋)) = (0g‘𝐶)) |
42 | 36, 37, 41 | syl2anc 582 | . . . . . . 7 ⊢ (𝜑 → (𝑄 ∙ (𝑆‘𝑋)) = (0g‘𝐶)) |
43 | 35, 42 | sylan9eqr 2789 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ {𝑄}) → (𝑔 ∙ (𝑆‘𝑋)) = (0g‘𝐶)) |
44 | 33, 43 | neeqtrrd 3011 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ {𝑄}) → (𝑆‘(𝐹 · 𝑋)) ≠ (𝑔 ∙ (𝑆‘𝑋))) |
45 | 44 | neneqd 2941 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ {𝑄}) → ¬ (𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋))) |
46 | 45 | nrexdv 3145 | . . 3 ⊢ (𝜑 → ¬ ∃𝑔 ∈ {𝑄} (𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋))) |
47 | reuun2 4316 | . . 3 ⊢ (¬ ∃𝑔 ∈ {𝑄} (𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋)) → (∃!𝑔 ∈ ((𝐴 ∖ {𝑄}) ∪ {𝑄})(𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋)) ↔ ∃!𝑔 ∈ (𝐴 ∖ {𝑄})(𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋)))) | |
48 | 46, 47 | syl 17 | . 2 ⊢ (𝜑 → (∃!𝑔 ∈ ((𝐴 ∖ {𝑄}) ∪ {𝑄})(𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋)) ↔ ∃!𝑔 ∈ (𝐴 ∖ {𝑄})(𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋)))) |
49 | hdmap14lem2.a | . . . 4 ⊢ 𝐴 = (Base‘𝑃) | |
50 | 38, 49, 40 | lmod0cl 20776 | . . 3 ⊢ (𝐶 ∈ LMod → 𝑄 ∈ 𝐴) |
51 | difsnid 4816 | . . 3 ⊢ (𝑄 ∈ 𝐴 → ((𝐴 ∖ {𝑄}) ∪ {𝑄}) = 𝐴) | |
52 | reueq1 3411 | . . 3 ⊢ (((𝐴 ∖ {𝑄}) ∪ {𝑄}) = 𝐴 → (∃!𝑔 ∈ ((𝐴 ∖ {𝑄}) ∪ {𝑄})(𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋)) ↔ ∃!𝑔 ∈ 𝐴 (𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋)))) | |
53 | 36, 50, 51, 52 | 4syl 19 | . 2 ⊢ (𝜑 → (∃!𝑔 ∈ ((𝐴 ∖ {𝑄}) ∪ {𝑄})(𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋)) ↔ ∃!𝑔 ∈ 𝐴 (𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋)))) |
54 | 48, 53 | bitr3d 280 | 1 ⊢ (𝜑 → (∃!𝑔 ∈ (𝐴 ∖ {𝑄})(𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋)) ↔ ∃!𝑔 ∈ 𝐴 (𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2936 ∃wrex 3066 ∃!wreu 3370 ∖ cdif 3944 ∪ cun 3945 {csn 4630 ‘cfv 6551 (class class class)co 7424 Basecbs 17185 Scalarcsca 17241 ·𝑠 cvsca 17242 0gc0g 17426 LModclmod 20748 LSpanclspn 20860 HLchlt 38826 LHypclh 39461 DVecHcdvh 40555 LCDualclcd 41063 HDMapchdma 41269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 ax-riotaBAD 38429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-ot 4639 df-uni 4911 df-int 4952 df-iun 5000 df-iin 5001 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-of 7689 df-om 7875 df-1st 7997 df-2nd 7998 df-tpos 8236 df-undef 8283 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-1o 8491 df-er 8729 df-map 8851 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-n0 12509 df-z 12595 df-uz 12859 df-fz 13523 df-struct 17121 df-sets 17138 df-slot 17156 df-ndx 17168 df-base 17186 df-ress 17215 df-plusg 17251 df-mulr 17252 df-sca 17254 df-vsca 17255 df-0g 17428 df-mre 17571 df-mrc 17572 df-acs 17574 df-proset 18292 df-poset 18310 df-plt 18327 df-lub 18343 df-glb 18344 df-join 18345 df-meet 18346 df-p0 18422 df-p1 18423 df-lat 18429 df-clat 18496 df-mgm 18605 df-sgrp 18684 df-mnd 18700 df-submnd 18746 df-grp 18898 df-minusg 18899 df-sbg 18900 df-subg 19083 df-cntz 19273 df-oppg 19302 df-lsm 19596 df-cmn 19742 df-abl 19743 df-mgp 20080 df-rng 20098 df-ur 20127 df-ring 20180 df-oppr 20278 df-dvdsr 20301 df-unit 20302 df-invr 20332 df-dvr 20345 df-drng 20631 df-lmod 20750 df-lss 20821 df-lsp 20861 df-lvec 20993 df-lsatoms 38452 df-lshyp 38453 df-lcv 38495 df-lfl 38534 df-lkr 38562 df-ldual 38600 df-oposet 38652 df-ol 38654 df-oml 38655 df-covers 38742 df-ats 38743 df-atl 38774 df-cvlat 38798 df-hlat 38827 df-llines 38975 df-lplanes 38976 df-lvols 38977 df-lines 38978 df-psubsp 38980 df-pmap 38981 df-padd 39273 df-lhyp 39465 df-laut 39466 df-ldil 39581 df-ltrn 39582 df-trl 39636 df-tgrp 40220 df-tendo 40232 df-edring 40234 df-dveca 40480 df-disoa 40506 df-dvech 40556 df-dib 40616 df-dic 40650 df-dih 40706 df-doch 40825 df-djh 40872 df-lcdual 41064 df-mapd 41102 df-hvmap 41234 df-hdmap1 41270 df-hdmap 41271 |
This theorem is referenced by: hdmap14lem4 41349 |
Copyright terms: Public domain | W3C validator |