MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashxp Structured version   Visualization version   GIF version

Theorem hashxp 14419
Description: The size of the Cartesian product of two finite sets is the product of their sizes. (Contributed by Paul Chapman, 30-Nov-2012.)
Assertion
Ref Expression
hashxp ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) · (♯‘𝐵)))

Proof of Theorem hashxp
StepHypRef Expression
1 xpeq2 5693 . . . . . 6 (𝐵 = if(𝐵 ∈ Fin, 𝐵, ∅) → (𝐴 × 𝐵) = (𝐴 × if(𝐵 ∈ Fin, 𝐵, ∅)))
21fveq2d 6895 . . . . 5 (𝐵 = if(𝐵 ∈ Fin, 𝐵, ∅) → (♯‘(𝐴 × 𝐵)) = (♯‘(𝐴 × if(𝐵 ∈ Fin, 𝐵, ∅))))
3 fveq2 6891 . . . . . 6 (𝐵 = if(𝐵 ∈ Fin, 𝐵, ∅) → (♯‘𝐵) = (♯‘if(𝐵 ∈ Fin, 𝐵, ∅)))
43oveq2d 7430 . . . . 5 (𝐵 = if(𝐵 ∈ Fin, 𝐵, ∅) → ((♯‘𝐴) · (♯‘𝐵)) = ((♯‘𝐴) · (♯‘if(𝐵 ∈ Fin, 𝐵, ∅))))
52, 4eqeq12d 2743 . . . 4 (𝐵 = if(𝐵 ∈ Fin, 𝐵, ∅) → ((♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) · (♯‘𝐵)) ↔ (♯‘(𝐴 × if(𝐵 ∈ Fin, 𝐵, ∅))) = ((♯‘𝐴) · (♯‘if(𝐵 ∈ Fin, 𝐵, ∅)))))
65imbi2d 340 . . 3 (𝐵 = if(𝐵 ∈ Fin, 𝐵, ∅) → ((𝐴 ∈ Fin → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) · (♯‘𝐵))) ↔ (𝐴 ∈ Fin → (♯‘(𝐴 × if(𝐵 ∈ Fin, 𝐵, ∅))) = ((♯‘𝐴) · (♯‘if(𝐵 ∈ Fin, 𝐵, ∅))))))
7 0fin 9189 . . . . 5 ∅ ∈ Fin
87elimel 4593 . . . 4 if(𝐵 ∈ Fin, 𝐵, ∅) ∈ Fin
98hashxplem 14418 . . 3 (𝐴 ∈ Fin → (♯‘(𝐴 × if(𝐵 ∈ Fin, 𝐵, ∅))) = ((♯‘𝐴) · (♯‘if(𝐵 ∈ Fin, 𝐵, ∅))))
106, 9dedth 4582 . 2 (𝐵 ∈ Fin → (𝐴 ∈ Fin → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) · (♯‘𝐵))))
1110impcom 407 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) · (♯‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  c0 4318  ifcif 4524   × cxp 5670  cfv 6542  (class class class)co 7414  Fincfn 8957   · cmul 11137  chash 14315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-dju 9918  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-n0 12497  df-z 12583  df-uz 12847  df-fz 13511  df-hash 14316
This theorem is referenced by:  hashmap  14420  ackbijnn  15800  crth  16740  phimullem  16741  prmreclem3  16880  lsmhash  19653  lgsquadlem3  27308  numclwwlk1  30164  hashxpe  32570  matdim  33299  ccatmulgnn0dir  34164  ofcccat  34165  lpadlem2  34302  erdszelem10  34800  poimirlem26  37108  aks6d1c2  41585  frlmvscadiccat  41718
  Copyright terms: Public domain W3C validator