![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashxp | Structured version Visualization version GIF version |
Description: The size of the Cartesian product of two finite sets is the product of their sizes. (Contributed by Paul Chapman, 30-Nov-2012.) |
Ref | Expression |
---|---|
hashxp | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) · (♯‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq2 5693 | . . . . . 6 ⊢ (𝐵 = if(𝐵 ∈ Fin, 𝐵, ∅) → (𝐴 × 𝐵) = (𝐴 × if(𝐵 ∈ Fin, 𝐵, ∅))) | |
2 | 1 | fveq2d 6895 | . . . . 5 ⊢ (𝐵 = if(𝐵 ∈ Fin, 𝐵, ∅) → (♯‘(𝐴 × 𝐵)) = (♯‘(𝐴 × if(𝐵 ∈ Fin, 𝐵, ∅)))) |
3 | fveq2 6891 | . . . . . 6 ⊢ (𝐵 = if(𝐵 ∈ Fin, 𝐵, ∅) → (♯‘𝐵) = (♯‘if(𝐵 ∈ Fin, 𝐵, ∅))) | |
4 | 3 | oveq2d 7430 | . . . . 5 ⊢ (𝐵 = if(𝐵 ∈ Fin, 𝐵, ∅) → ((♯‘𝐴) · (♯‘𝐵)) = ((♯‘𝐴) · (♯‘if(𝐵 ∈ Fin, 𝐵, ∅)))) |
5 | 2, 4 | eqeq12d 2743 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ Fin, 𝐵, ∅) → ((♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) · (♯‘𝐵)) ↔ (♯‘(𝐴 × if(𝐵 ∈ Fin, 𝐵, ∅))) = ((♯‘𝐴) · (♯‘if(𝐵 ∈ Fin, 𝐵, ∅))))) |
6 | 5 | imbi2d 340 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ Fin, 𝐵, ∅) → ((𝐴 ∈ Fin → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) · (♯‘𝐵))) ↔ (𝐴 ∈ Fin → (♯‘(𝐴 × if(𝐵 ∈ Fin, 𝐵, ∅))) = ((♯‘𝐴) · (♯‘if(𝐵 ∈ Fin, 𝐵, ∅)))))) |
7 | 0fin 9189 | . . . . 5 ⊢ ∅ ∈ Fin | |
8 | 7 | elimel 4593 | . . . 4 ⊢ if(𝐵 ∈ Fin, 𝐵, ∅) ∈ Fin |
9 | 8 | hashxplem 14418 | . . 3 ⊢ (𝐴 ∈ Fin → (♯‘(𝐴 × if(𝐵 ∈ Fin, 𝐵, ∅))) = ((♯‘𝐴) · (♯‘if(𝐵 ∈ Fin, 𝐵, ∅)))) |
10 | 6, 9 | dedth 4582 | . 2 ⊢ (𝐵 ∈ Fin → (𝐴 ∈ Fin → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) · (♯‘𝐵)))) |
11 | 10 | impcom 407 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) · (♯‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∅c0 4318 ifcif 4524 × cxp 5670 ‘cfv 6542 (class class class)co 7414 Fincfn 8957 · cmul 11137 ♯chash 14315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-dju 9918 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-n0 12497 df-z 12583 df-uz 12847 df-fz 13511 df-hash 14316 |
This theorem is referenced by: hashmap 14420 ackbijnn 15800 crth 16740 phimullem 16741 prmreclem3 16880 lsmhash 19653 lgsquadlem3 27308 numclwwlk1 30164 hashxpe 32570 matdim 33299 ccatmulgnn0dir 34164 ofcccat 34165 lpadlem2 34302 erdszelem10 34800 poimirlem26 37108 aks6d1c2 41585 frlmvscadiccat 41718 |
Copyright terms: Public domain | W3C validator |