![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumsnfd | Structured version Visualization version GIF version |
Description: Group sum of a singleton, deduction form, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Thierry Arnoux, 28-Mar-2018.) (Revised by AV, 11-Dec-2019.) |
Ref | Expression |
---|---|
gsumsnd.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumsnd.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
gsumsnd.m | ⊢ (𝜑 → 𝑀 ∈ 𝑉) |
gsumsnd.c | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
gsumsnd.s | ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝐴 = 𝐶) |
gsumsnfd.p | ⊢ Ⅎ𝑘𝜑 |
gsumsnfd.c | ⊢ Ⅎ𝑘𝐶 |
Ref | Expression |
---|---|
gsumsnfd | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumsnfd.p | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
2 | elsni 4647 | . . . . . 6 ⊢ (𝑘 ∈ {𝑀} → 𝑘 = 𝑀) | |
3 | gsumsnd.s | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝐴 = 𝐶) | |
4 | 2, 3 | sylan2 591 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑀}) → 𝐴 = 𝐶) |
5 | 1, 4 | mpteq2da 5248 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ {𝑀} ↦ 𝐴) = (𝑘 ∈ {𝑀} ↦ 𝐶)) |
6 | 5 | oveq2d 7440 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐶))) |
7 | gsumsnd.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
8 | snfi 9073 | . . . . 5 ⊢ {𝑀} ∈ Fin | |
9 | 8 | a1i 11 | . . . 4 ⊢ (𝜑 → {𝑀} ∈ Fin) |
10 | gsumsnd.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
11 | gsumsnfd.c | . . . . 5 ⊢ Ⅎ𝑘𝐶 | |
12 | gsumsnd.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
13 | eqid 2727 | . . . . 5 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
14 | 11, 12, 13 | gsumconstf 19895 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ {𝑀} ∈ Fin ∧ 𝐶 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐶)) = ((♯‘{𝑀})(.g‘𝐺)𝐶)) |
15 | 7, 9, 10, 14 | syl3anc 1368 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐶)) = ((♯‘{𝑀})(.g‘𝐺)𝐶)) |
16 | 6, 15 | eqtrd 2767 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = ((♯‘{𝑀})(.g‘𝐺)𝐶)) |
17 | gsumsnd.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ 𝑉) | |
18 | hashsng 14366 | . . . 4 ⊢ (𝑀 ∈ 𝑉 → (♯‘{𝑀}) = 1) | |
19 | 17, 18 | syl 17 | . . 3 ⊢ (𝜑 → (♯‘{𝑀}) = 1) |
20 | 19 | oveq1d 7439 | . 2 ⊢ (𝜑 → ((♯‘{𝑀})(.g‘𝐺)𝐶) = (1(.g‘𝐺)𝐶)) |
21 | 12, 13 | mulg1 19041 | . . 3 ⊢ (𝐶 ∈ 𝐵 → (1(.g‘𝐺)𝐶) = 𝐶) |
22 | 10, 21 | syl 17 | . 2 ⊢ (𝜑 → (1(.g‘𝐺)𝐶) = 𝐶) |
23 | 16, 20, 22 | 3eqtrd 2771 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 Ⅎwnf 1777 ∈ wcel 2098 Ⅎwnfc 2878 {csn 4630 ↦ cmpt 5233 ‘cfv 6551 (class class class)co 7424 Fincfn 8968 1c1 11145 ♯chash 14327 Basecbs 17185 Σg cgsu 17427 Mndcmnd 18699 .gcmg 19028 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-int 4952 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-se 5636 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-isom 6560 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-1st 7997 df-2nd 7998 df-supp 8170 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-1o 8491 df-er 8729 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-oi 9539 df-card 9968 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-nn 12249 df-n0 12509 df-z 12595 df-uz 12859 df-fz 13523 df-fzo 13666 df-seq 14005 df-hash 14328 df-0g 17428 df-gsum 17429 df-mgm 18605 df-sgrp 18684 df-mnd 18700 df-mulg 19029 df-cntz 19273 |
This theorem is referenced by: gsumsnd 19912 gsumsnf 19913 gsumunsnfd 19917 esumsnf 33688 gsumdifsndf 47294 |
Copyright terms: Public domain | W3C validator |