![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumreidx | Structured version Visualization version GIF version |
Description: Re-index a finite group sum using a bijection. Corresponds to the first equation in [Lang] p. 5 with 𝑀 = 1. (Contributed by AV, 26-Dec-2023.) |
Ref | Expression |
---|---|
gsumreidx.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumreidx.z | ⊢ 0 = (0g‘𝐺) |
gsumreidx.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsumreidx.f | ⊢ (𝜑 → 𝐹:(𝑀...𝑁)⟶𝐵) |
gsumreidx.h | ⊢ (𝜑 → 𝐻:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
Ref | Expression |
---|---|
gsumreidx | ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹 ∘ 𝐻))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumreidx.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsumreidx.z | . 2 ⊢ 0 = (0g‘𝐺) | |
3 | gsumreidx.g | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | ovexd 7449 | . 2 ⊢ (𝜑 → (𝑀...𝑁) ∈ V) | |
5 | gsumreidx.f | . 2 ⊢ (𝜑 → 𝐹:(𝑀...𝑁)⟶𝐵) | |
6 | fzfid 13964 | . . 3 ⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) | |
7 | 2 | fvexi 6905 | . . . 4 ⊢ 0 ∈ V |
8 | 7 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ V) |
9 | 5, 6, 8 | fdmfifsupp 9392 | . 2 ⊢ (𝜑 → 𝐹 finSupp 0 ) |
10 | gsumreidx.h | . 2 ⊢ (𝜑 → 𝐻:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) | |
11 | 1, 2, 3, 4, 5, 9, 10 | gsumf1o 19864 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹 ∘ 𝐻))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 Vcvv 3470 ∘ ccom 5676 ⟶wf 6538 –1-1-onto→wf1o 6541 ‘cfv 6542 (class class class)co 7414 ...cfz 13510 Basecbs 17173 0gc0g 17414 Σg cgsu 17415 CMndccmn 19728 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9380 df-oi 9527 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-n0 12497 df-z 12583 df-uz 12847 df-fz 13511 df-fzo 13654 df-seq 13993 df-hash 14316 df-0g 17416 df-gsum 17417 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-cntz 19261 df-cmn 19730 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |