![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpvrinv | Structured version Visualization version GIF version |
Description: Tuple-wise right inverse in groups. (Contributed by Mario Carneiro, 22-Sep-2015.) |
Ref | Expression |
---|---|
grpvlinv.b | ⊢ 𝐵 = (Base‘𝐺) |
grpvlinv.p | ⊢ + = (+g‘𝐺) |
grpvlinv.n | ⊢ 𝑁 = (invg‘𝐺) |
grpvlinv.z | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
grpvrinv | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → (𝑋 ∘f + (𝑁 ∘ 𝑋)) = (𝐼 × { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 766 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) ∧ 𝑥 ∈ 𝐼) → 𝐺 ∈ Grp) | |
2 | elmapi 8861 | . . . . . 6 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → 𝑋:𝐼⟶𝐵) | |
3 | 2 | adantl 481 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → 𝑋:𝐼⟶𝐵) |
4 | 3 | ffvelcdmda 7088 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) ∧ 𝑥 ∈ 𝐼) → (𝑋‘𝑥) ∈ 𝐵) |
5 | grpvlinv.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
6 | grpvlinv.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
7 | grpvlinv.z | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
8 | grpvlinv.n | . . . . 5 ⊢ 𝑁 = (invg‘𝐺) | |
9 | 5, 6, 7, 8 | grprinv 18940 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑋‘𝑥) ∈ 𝐵) → ((𝑋‘𝑥) + (𝑁‘(𝑋‘𝑥))) = 0 ) |
10 | 1, 4, 9 | syl2anc 583 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) ∧ 𝑥 ∈ 𝐼) → ((𝑋‘𝑥) + (𝑁‘(𝑋‘𝑥))) = 0 ) |
11 | 10 | mpteq2dva 5242 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → (𝑥 ∈ 𝐼 ↦ ((𝑋‘𝑥) + (𝑁‘(𝑋‘𝑥)))) = (𝑥 ∈ 𝐼 ↦ 0 )) |
12 | elmapex 8860 | . . . . 5 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → (𝐵 ∈ V ∧ 𝐼 ∈ V)) | |
13 | 12 | simprd 495 | . . . 4 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → 𝐼 ∈ V) |
14 | 13 | adantl 481 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → 𝐼 ∈ V) |
15 | fvexd 6906 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) ∧ 𝑥 ∈ 𝐼) → (𝑁‘(𝑋‘𝑥)) ∈ V) | |
16 | 3 | feqmptd 6961 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → 𝑋 = (𝑥 ∈ 𝐼 ↦ (𝑋‘𝑥))) |
17 | 5, 8 | grpinvf 18936 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝑁:𝐵⟶𝐵) |
18 | fcompt 7136 | . . . 4 ⊢ ((𝑁:𝐵⟶𝐵 ∧ 𝑋:𝐼⟶𝐵) → (𝑁 ∘ 𝑋) = (𝑥 ∈ 𝐼 ↦ (𝑁‘(𝑋‘𝑥)))) | |
19 | 17, 2, 18 | syl2an 595 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → (𝑁 ∘ 𝑋) = (𝑥 ∈ 𝐼 ↦ (𝑁‘(𝑋‘𝑥)))) |
20 | 14, 4, 15, 16, 19 | offval2 7699 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → (𝑋 ∘f + (𝑁 ∘ 𝑋)) = (𝑥 ∈ 𝐼 ↦ ((𝑋‘𝑥) + (𝑁‘(𝑋‘𝑥))))) |
21 | fconstmpt 5734 | . . 3 ⊢ (𝐼 × { 0 }) = (𝑥 ∈ 𝐼 ↦ 0 ) | |
22 | 21 | a1i 11 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → (𝐼 × { 0 }) = (𝑥 ∈ 𝐼 ↦ 0 )) |
23 | 11, 20, 22 | 3eqtr4d 2777 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → (𝑋 ∘f + (𝑁 ∘ 𝑋)) = (𝐼 × { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Vcvv 3469 {csn 4624 ↦ cmpt 5225 × cxp 5670 ∘ ccom 5676 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 ∘f cof 7677 ↑m cmap 8838 Basecbs 17173 +gcplusg 17226 0gc0g 17414 Grpcgrp 18883 invgcminusg 18884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-1st 7987 df-2nd 7988 df-map 8840 df-0g 17416 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-grp 18886 df-minusg 18887 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |