MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gicsym Structured version   Visualization version   GIF version

Theorem gicsym 19220
Description: Isomorphism is symmetric. (Contributed by Mario Carneiro, 21-Apr-2016.)
Assertion
Ref Expression
gicsym (𝑅𝑔 𝑆𝑆𝑔 𝑅)

Proof of Theorem gicsym
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brgic 19215 . 2 (𝑅𝑔 𝑆 ↔ (𝑅 GrpIso 𝑆) ≠ ∅)
2 n0 4342 . . 3 ((𝑅 GrpIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆))
3 gimcnv 19212 . . . . 5 (𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝑓 ∈ (𝑆 GrpIso 𝑅))
4 brgici 19216 . . . . 5 (𝑓 ∈ (𝑆 GrpIso 𝑅) → 𝑆𝑔 𝑅)
53, 4syl 17 . . . 4 (𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝑆𝑔 𝑅)
65exlimiv 1926 . . 3 (∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝑆𝑔 𝑅)
72, 6sylbi 216 . 2 ((𝑅 GrpIso 𝑆) ≠ ∅ → 𝑆𝑔 𝑅)
81, 7sylbi 216 1 (𝑅𝑔 𝑆𝑆𝑔 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1774  wcel 2099  wne 2935  c0 4318   class class class wbr 5142  ccnv 5671  (class class class)co 7414   GrpIso cgim 19202  𝑔 cgic 19203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7987  df-2nd 7988  df-1o 8480  df-mgm 18591  df-sgrp 18670  df-mnd 18686  df-grp 18884  df-ghm 19159  df-gim 19204  df-gic 19205
This theorem is referenced by:  gicer  19222  cygznlem3  21490  cygth  21492  cyggic  21493
  Copyright terms: Public domain W3C validator