Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ghomdiv Structured version   Visualization version   GIF version

Theorem ghomdiv 37354
Description: Group homomorphisms preserve division. (Contributed by Jeff Madsen, 16-Jun-2011.)
Hypotheses
Ref Expression
ghomdiv.1 𝑋 = ran 𝐺
ghomdiv.2 𝐷 = ( /𝑔𝐺)
ghomdiv.3 𝐶 = ( /𝑔𝐻)
Assertion
Ref Expression
ghomdiv (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹‘(𝐴𝐷𝐵)) = ((𝐹𝐴)𝐶(𝐹𝐵)))

Proof of Theorem ghomdiv
StepHypRef Expression
1 simpl2 1190 . . . 4 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → 𝐻 ∈ GrpOp)
2 ghomdiv.1 . . . . . . 7 𝑋 = ran 𝐺
3 eqid 2727 . . . . . . 7 ran 𝐻 = ran 𝐻
42, 3ghomf 37352 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → 𝐹:𝑋⟶ran 𝐻)
54ffvelcdmda 7088 . . . . 5 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ 𝐴𝑋) → (𝐹𝐴) ∈ ran 𝐻)
65adantrr 716 . . . 4 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐴) ∈ ran 𝐻)
74ffvelcdmda 7088 . . . . 5 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ 𝐵𝑋) → (𝐹𝐵) ∈ ran 𝐻)
87adantrl 715 . . . 4 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐵) ∈ ran 𝐻)
9 ghomdiv.3 . . . . 5 𝐶 = ( /𝑔𝐻)
103, 9grponpcan 30346 . . . 4 ((𝐻 ∈ GrpOp ∧ (𝐹𝐴) ∈ ran 𝐻 ∧ (𝐹𝐵) ∈ ran 𝐻) → (((𝐹𝐴)𝐶(𝐹𝐵))𝐻(𝐹𝐵)) = (𝐹𝐴))
111, 6, 8, 10syl3anc 1369 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → (((𝐹𝐴)𝐶(𝐹𝐵))𝐻(𝐹𝐵)) = (𝐹𝐴))
12 ghomdiv.2 . . . . . . 7 𝐷 = ( /𝑔𝐺)
132, 12grponpcan 30346 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵)𝐺𝐵) = 𝐴)
14133expb 1118 . . . . 5 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → ((𝐴𝐷𝐵)𝐺𝐵) = 𝐴)
15143ad2antl1 1183 . . . 4 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐴𝐷𝐵)𝐺𝐵) = 𝐴)
1615fveq2d 6895 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹‘((𝐴𝐷𝐵)𝐺𝐵)) = (𝐹𝐴))
172, 12grpodivcl 30342 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ 𝑋)
18173expb 1118 . . . . . 6 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ∈ 𝑋)
19 simprr 772 . . . . . 6 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → 𝐵𝑋)
2018, 19jca 511 . . . . 5 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → ((𝐴𝐷𝐵) ∈ 𝑋𝐵𝑋))
21203ad2antl1 1183 . . . 4 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐴𝐷𝐵) ∈ 𝑋𝐵𝑋))
222ghomlinOLD 37350 . . . . 5 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ ((𝐴𝐷𝐵) ∈ 𝑋𝐵𝑋)) → ((𝐹‘(𝐴𝐷𝐵))𝐻(𝐹𝐵)) = (𝐹‘((𝐴𝐷𝐵)𝐺𝐵)))
2322eqcomd 2733 . . . 4 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ ((𝐴𝐷𝐵) ∈ 𝑋𝐵𝑋)) → (𝐹‘((𝐴𝐷𝐵)𝐺𝐵)) = ((𝐹‘(𝐴𝐷𝐵))𝐻(𝐹𝐵)))
2421, 23syldan 590 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹‘((𝐴𝐷𝐵)𝐺𝐵)) = ((𝐹‘(𝐴𝐷𝐵))𝐻(𝐹𝐵)))
2511, 16, 243eqtr2rd 2774 . 2 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹‘(𝐴𝐷𝐵))𝐻(𝐹𝐵)) = (((𝐹𝐴)𝐶(𝐹𝐵))𝐻(𝐹𝐵)))
26183ad2antl1 1183 . . . 4 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ∈ 𝑋)
274ffvelcdmda 7088 . . . 4 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝐷𝐵) ∈ 𝑋) → (𝐹‘(𝐴𝐷𝐵)) ∈ ran 𝐻)
2826, 27syldan 590 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹‘(𝐴𝐷𝐵)) ∈ ran 𝐻)
293, 9grpodivcl 30342 . . . 4 ((𝐻 ∈ GrpOp ∧ (𝐹𝐴) ∈ ran 𝐻 ∧ (𝐹𝐵) ∈ ran 𝐻) → ((𝐹𝐴)𝐶(𝐹𝐵)) ∈ ran 𝐻)
301, 6, 8, 29syl3anc 1369 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴)𝐶(𝐹𝐵)) ∈ ran 𝐻)
313grporcan 30321 . . 3 ((𝐻 ∈ GrpOp ∧ ((𝐹‘(𝐴𝐷𝐵)) ∈ ran 𝐻 ∧ ((𝐹𝐴)𝐶(𝐹𝐵)) ∈ ran 𝐻 ∧ (𝐹𝐵) ∈ ran 𝐻)) → (((𝐹‘(𝐴𝐷𝐵))𝐻(𝐹𝐵)) = (((𝐹𝐴)𝐶(𝐹𝐵))𝐻(𝐹𝐵)) ↔ (𝐹‘(𝐴𝐷𝐵)) = ((𝐹𝐴)𝐶(𝐹𝐵))))
321, 28, 30, 8, 31syl13anc 1370 . 2 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → (((𝐹‘(𝐴𝐷𝐵))𝐻(𝐹𝐵)) = (((𝐹𝐴)𝐶(𝐹𝐵))𝐻(𝐹𝐵)) ↔ (𝐹‘(𝐴𝐷𝐵)) = ((𝐹𝐴)𝐶(𝐹𝐵))))
3325, 32mpbid 231 1 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹‘(𝐴𝐷𝐵)) = ((𝐹𝐴)𝐶(𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  ran crn 5673  cfv 6542  (class class class)co 7414  GrpOpcgr 30292   /𝑔 cgs 30295   GrpOpHom cghomOLD 37345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7987  df-2nd 7988  df-grpo 30296  df-gid 30297  df-ginv 30298  df-gdiv 30299  df-ghomOLD 37346
This theorem is referenced by:  grpokerinj  37355  rngohomsub  37435
  Copyright terms: Public domain W3C validator