MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funelss Structured version   Visualization version   GIF version

Theorem funelss 8055
Description: If the first component of an element of a function is in the domain of a subset of the function, the element is a member of this subset. (Contributed by AV, 27-Oct-2023.)
Assertion
Ref Expression
funelss ((Fun 𝐴𝐵𝐴𝑋𝐴) → ((1st𝑋) ∈ dom 𝐵𝑋𝐵))

Proof of Theorem funelss
StepHypRef Expression
1 funrel 6573 . . . . . 6 (Fun 𝐴 → Rel 𝐴)
2 1st2nd 8047 . . . . . 6 ((Rel 𝐴𝑋𝐴) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
31, 2sylan 578 . . . . 5 ((Fun 𝐴𝑋𝐴) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
4 simpl1l 1221 . . . . . . . . . 10 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → Fun 𝐴)
5 simpl3 1190 . . . . . . . . . 10 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → 𝐵𝐴)
6 simpr 483 . . . . . . . . . 10 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → (1st𝑋) ∈ dom 𝐵)
7 funssfv 6921 . . . . . . . . . 10 ((Fun 𝐴𝐵𝐴 ∧ (1st𝑋) ∈ dom 𝐵) → (𝐴‘(1st𝑋)) = (𝐵‘(1st𝑋)))
84, 5, 6, 7syl3anc 1368 . . . . . . . . 9 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → (𝐴‘(1st𝑋)) = (𝐵‘(1st𝑋)))
9 eleq1 2816 . . . . . . . . . . . . . . 15 (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ → (𝑋𝐴 ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐴))
109adantl 480 . . . . . . . . . . . . . 14 ((Fun 𝐴𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩) → (𝑋𝐴 ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐴))
11 funopfv 6952 . . . . . . . . . . . . . . 15 (Fun 𝐴 → (⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐴 → (𝐴‘(1st𝑋)) = (2nd𝑋)))
1211adantr 479 . . . . . . . . . . . . . 14 ((Fun 𝐴𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩) → (⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐴 → (𝐴‘(1st𝑋)) = (2nd𝑋)))
1310, 12sylbid 239 . . . . . . . . . . . . 13 ((Fun 𝐴𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩) → (𝑋𝐴 → (𝐴‘(1st𝑋)) = (2nd𝑋)))
1413impancom 450 . . . . . . . . . . . 12 ((Fun 𝐴𝑋𝐴) → (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ → (𝐴‘(1st𝑋)) = (2nd𝑋)))
1514imp 405 . . . . . . . . . . 11 (((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩) → (𝐴‘(1st𝑋)) = (2nd𝑋))
16153adant3 1129 . . . . . . . . . 10 (((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) → (𝐴‘(1st𝑋)) = (2nd𝑋))
1716adantr 479 . . . . . . . . 9 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → (𝐴‘(1st𝑋)) = (2nd𝑋))
188, 17eqtr3d 2769 . . . . . . . 8 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → (𝐵‘(1st𝑋)) = (2nd𝑋))
19 funss 6575 . . . . . . . . . . . . . 14 (𝐵𝐴 → (Fun 𝐴 → Fun 𝐵))
2019com12 32 . . . . . . . . . . . . 13 (Fun 𝐴 → (𝐵𝐴 → Fun 𝐵))
2120adantr 479 . . . . . . . . . . . 12 ((Fun 𝐴𝑋𝐴) → (𝐵𝐴 → Fun 𝐵))
2221imp 405 . . . . . . . . . . 11 (((Fun 𝐴𝑋𝐴) ∧ 𝐵𝐴) → Fun 𝐵)
2322funfnd 6587 . . . . . . . . . 10 (((Fun 𝐴𝑋𝐴) ∧ 𝐵𝐴) → 𝐵 Fn dom 𝐵)
24233adant2 1128 . . . . . . . . 9 (((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) → 𝐵 Fn dom 𝐵)
25 fnopfvb 6954 . . . . . . . . 9 ((𝐵 Fn dom 𝐵 ∧ (1st𝑋) ∈ dom 𝐵) → ((𝐵‘(1st𝑋)) = (2nd𝑋) ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐵))
2624, 25sylan 578 . . . . . . . 8 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → ((𝐵‘(1st𝑋)) = (2nd𝑋) ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐵))
2718, 26mpbid 231 . . . . . . 7 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐵)
28 eleq1 2816 . . . . . . . . 9 (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ → (𝑋𝐵 ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐵))
29283ad2ant2 1131 . . . . . . . 8 (((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) → (𝑋𝐵 ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐵))
3029adantr 479 . . . . . . 7 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → (𝑋𝐵 ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐵))
3127, 30mpbird 256 . . . . . 6 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → 𝑋𝐵)
32313exp1 1349 . . . . 5 ((Fun 𝐴𝑋𝐴) → (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ → (𝐵𝐴 → ((1st𝑋) ∈ dom 𝐵𝑋𝐵))))
333, 32mpd 15 . . . 4 ((Fun 𝐴𝑋𝐴) → (𝐵𝐴 → ((1st𝑋) ∈ dom 𝐵𝑋𝐵)))
3433ex 411 . . 3 (Fun 𝐴 → (𝑋𝐴 → (𝐵𝐴 → ((1st𝑋) ∈ dom 𝐵𝑋𝐵))))
3534com23 86 . 2 (Fun 𝐴 → (𝐵𝐴 → (𝑋𝐴 → ((1st𝑋) ∈ dom 𝐵𝑋𝐵))))
36353imp 1108 1 ((Fun 𝐴𝐵𝐴𝑋𝐴) → ((1st𝑋) ∈ dom 𝐵𝑋𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wss 3947  cop 4636  dom cdm 5680  Rel wrel 5685  Fun wfun 6545   Fn wfn 6546  cfv 6551  1st c1st 7995  2nd c2nd 7996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pr 5431  ax-un 7744
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-br 5151  df-opab 5213  df-mpt 5234  df-id 5578  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-iota 6503  df-fun 6553  df-fn 6554  df-fv 6559  df-1st 7997  df-2nd 7998
This theorem is referenced by:  funeldmdif  8056
  Copyright terms: Public domain W3C validator