![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgrwopreg2 | Structured version Visualization version GIF version |
Description: According to statement 5 in [Huneke] p. 2: "If ... B is a singleton, then that singleton is a universal friend". (Contributed by Alexander van der Vekens, 1-Jan-2018.) (Proof shortened by AV, 4-Feb-2022.) |
Ref | Expression |
---|---|
frgrwopreg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
frgrwopreg.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
frgrwopreg.a | ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} |
frgrwopreg.b | ⊢ 𝐵 = (𝑉 ∖ 𝐴) |
frgrwopreg.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
frgrwopreg2 | ⊢ ((𝐺 ∈ FriendGraph ∧ (♯‘𝐵) = 1) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgrwopreg.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | frgrwopreg.d | . . . . . 6 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
3 | frgrwopreg.a | . . . . . 6 ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} | |
4 | frgrwopreg.b | . . . . . 6 ⊢ 𝐵 = (𝑉 ∖ 𝐴) | |
5 | 1, 2, 3, 4 | frgrwopreglem1 30109 | . . . . 5 ⊢ (𝐴 ∈ V ∧ 𝐵 ∈ V) |
6 | 5 | simpri 485 | . . . 4 ⊢ 𝐵 ∈ V |
7 | hash1snb 14402 | . . . 4 ⊢ (𝐵 ∈ V → ((♯‘𝐵) = 1 ↔ ∃𝑣 𝐵 = {𝑣})) | |
8 | 6, 7 | ax-mp 5 | . . 3 ⊢ ((♯‘𝐵) = 1 ↔ ∃𝑣 𝐵 = {𝑣}) |
9 | exsnrex 4680 | . . . . 5 ⊢ (∃𝑣 𝐵 = {𝑣} ↔ ∃𝑣 ∈ 𝐵 𝐵 = {𝑣}) | |
10 | difss 4127 | . . . . . . . 8 ⊢ (𝑉 ∖ 𝐴) ⊆ 𝑉 | |
11 | 4, 10 | eqsstri 4012 | . . . . . . 7 ⊢ 𝐵 ⊆ 𝑉 |
12 | ssrexv 4047 | . . . . . . 7 ⊢ (𝐵 ⊆ 𝑉 → (∃𝑣 ∈ 𝐵 𝐵 = {𝑣} → ∃𝑣 ∈ 𝑉 𝐵 = {𝑣})) | |
13 | 11, 12 | ax-mp 5 | . . . . . 6 ⊢ (∃𝑣 ∈ 𝐵 𝐵 = {𝑣} → ∃𝑣 ∈ 𝑉 𝐵 = {𝑣}) |
14 | frgrwopreg.e | . . . . . . . . 9 ⊢ 𝐸 = (Edg‘𝐺) | |
15 | 1, 2, 3, 4, 14 | frgrwopregbsn 30114 | . . . . . . . 8 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑣 ∈ 𝑉 ∧ 𝐵 = {𝑣}) → ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸) |
16 | 15 | 3expia 1119 | . . . . . . 7 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑣 ∈ 𝑉) → (𝐵 = {𝑣} → ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) |
17 | 16 | reximdva 3163 | . . . . . 6 ⊢ (𝐺 ∈ FriendGraph → (∃𝑣 ∈ 𝑉 𝐵 = {𝑣} → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) |
18 | 13, 17 | syl5com 31 | . . . . 5 ⊢ (∃𝑣 ∈ 𝐵 𝐵 = {𝑣} → (𝐺 ∈ FriendGraph → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) |
19 | 9, 18 | sylbi 216 | . . . 4 ⊢ (∃𝑣 𝐵 = {𝑣} → (𝐺 ∈ FriendGraph → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) |
20 | 19 | com12 32 | . . 3 ⊢ (𝐺 ∈ FriendGraph → (∃𝑣 𝐵 = {𝑣} → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) |
21 | 8, 20 | biimtrid 241 | . 2 ⊢ (𝐺 ∈ FriendGraph → ((♯‘𝐵) = 1 → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) |
22 | 21 | imp 406 | 1 ⊢ ((𝐺 ∈ FriendGraph ∧ (♯‘𝐵) = 1) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∃wex 1774 ∈ wcel 2099 ∀wral 3056 ∃wrex 3065 {crab 3427 Vcvv 3469 ∖ cdif 3941 ⊆ wss 3944 {csn 4624 {cpr 4626 ‘cfv 6542 1c1 11131 ♯chash 14313 Vtxcvtx 28796 Edgcedg 28847 VtxDegcvtxdg 29266 FriendGraph cfrgr 30055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-dju 9916 df-card 9954 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-nn 12235 df-2 12297 df-n0 12495 df-xnn0 12567 df-z 12581 df-uz 12845 df-xadd 13117 df-fz 13509 df-hash 14314 df-edg 28848 df-uhgr 28858 df-ushgr 28859 df-upgr 28882 df-umgr 28883 df-uspgr 28950 df-usgr 28951 df-nbgr 29133 df-vtxdg 29267 df-frgr 30056 |
This theorem is referenced by: frgrregorufr0 30121 |
Copyright terms: Public domain | W3C validator |