MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrncvvdeq Structured version   Visualization version   GIF version

Theorem frgrncvvdeq 30113
Description: In a friendship graph, two vertices which are not connected by an edge have the same degree. This corresponds to claim 1 in [Huneke] p. 1: "If x,y are elements of (the friendship graph) G and are not adjacent, then they have the same degree (i.e., the same number of adjacent vertices).". (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 10-May-2021.)
Hypotheses
Ref Expression
frgrncvvdeq.v 𝑉 = (Vtx‘𝐺)
frgrncvvdeq.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
frgrncvvdeq (𝐺 ∈ FriendGraph → ∀𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})(𝑦 ∉ (𝐺 NeighbVtx 𝑥) → (𝐷𝑥) = (𝐷𝑦)))
Distinct variable groups:   𝑥,𝐺,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)

Proof of Theorem frgrncvvdeq
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovexd 7450 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ (𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥}))) ∧ 𝑦 ∉ (𝐺 NeighbVtx 𝑥)) → (𝐺 NeighbVtx 𝑥) ∈ V)
2 frgrncvvdeq.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
3 eqid 2728 . . . . . . 7 (Edg‘𝐺) = (Edg‘𝐺)
4 eqid 2728 . . . . . . 7 (𝐺 NeighbVtx 𝑥) = (𝐺 NeighbVtx 𝑥)
5 eqid 2728 . . . . . . 7 (𝐺 NeighbVtx 𝑦) = (𝐺 NeighbVtx 𝑦)
6 simpl 482 . . . . . . . 8 ((𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})) → 𝑥𝑉)
76ad2antlr 726 . . . . . . 7 (((𝐺 ∈ FriendGraph ∧ (𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥}))) ∧ 𝑦 ∉ (𝐺 NeighbVtx 𝑥)) → 𝑥𝑉)
8 eldifi 4123 . . . . . . . . 9 (𝑦 ∈ (𝑉 ∖ {𝑥}) → 𝑦𝑉)
98adantl 481 . . . . . . . 8 ((𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})) → 𝑦𝑉)
109ad2antlr 726 . . . . . . 7 (((𝐺 ∈ FriendGraph ∧ (𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥}))) ∧ 𝑦 ∉ (𝐺 NeighbVtx 𝑥)) → 𝑦𝑉)
11 eldif 3955 . . . . . . . . . 10 (𝑦 ∈ (𝑉 ∖ {𝑥}) ↔ (𝑦𝑉 ∧ ¬ 𝑦 ∈ {𝑥}))
12 velsn 4641 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥)
1312biimpri 227 . . . . . . . . . . . 12 (𝑦 = 𝑥𝑦 ∈ {𝑥})
1413equcoms 2016 . . . . . . . . . . 11 (𝑥 = 𝑦𝑦 ∈ {𝑥})
1514necon3bi 2963 . . . . . . . . . 10 𝑦 ∈ {𝑥} → 𝑥𝑦)
1611, 15simplbiim 504 . . . . . . . . 9 (𝑦 ∈ (𝑉 ∖ {𝑥}) → 𝑥𝑦)
1716adantl 481 . . . . . . . 8 ((𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})) → 𝑥𝑦)
1817ad2antlr 726 . . . . . . 7 (((𝐺 ∈ FriendGraph ∧ (𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥}))) ∧ 𝑦 ∉ (𝐺 NeighbVtx 𝑥)) → 𝑥𝑦)
19 simpr 484 . . . . . . 7 (((𝐺 ∈ FriendGraph ∧ (𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥}))) ∧ 𝑦 ∉ (𝐺 NeighbVtx 𝑥)) → 𝑦 ∉ (𝐺 NeighbVtx 𝑥))
20 simpl 482 . . . . . . . 8 ((𝐺 ∈ FriendGraph ∧ (𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥}))) → 𝐺 ∈ FriendGraph )
2120adantr 480 . . . . . . 7 (((𝐺 ∈ FriendGraph ∧ (𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥}))) ∧ 𝑦 ∉ (𝐺 NeighbVtx 𝑥)) → 𝐺 ∈ FriendGraph )
22 eqid 2728 . . . . . . 7 (𝑎 ∈ (𝐺 NeighbVtx 𝑥) ↦ (𝑏 ∈ (𝐺 NeighbVtx 𝑦){𝑎, 𝑏} ∈ (Edg‘𝐺))) = (𝑎 ∈ (𝐺 NeighbVtx 𝑥) ↦ (𝑏 ∈ (𝐺 NeighbVtx 𝑦){𝑎, 𝑏} ∈ (Edg‘𝐺)))
232, 3, 4, 5, 7, 10, 18, 19, 21, 22frgrncvvdeqlem10 30112 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ (𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥}))) ∧ 𝑦 ∉ (𝐺 NeighbVtx 𝑥)) → (𝑎 ∈ (𝐺 NeighbVtx 𝑥) ↦ (𝑏 ∈ (𝐺 NeighbVtx 𝑦){𝑎, 𝑏} ∈ (Edg‘𝐺))):(𝐺 NeighbVtx 𝑥)–1-1-onto→(𝐺 NeighbVtx 𝑦))
241, 23hasheqf1od 14339 . . . . 5 (((𝐺 ∈ FriendGraph ∧ (𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥}))) ∧ 𝑦 ∉ (𝐺 NeighbVtx 𝑥)) → (♯‘(𝐺 NeighbVtx 𝑥)) = (♯‘(𝐺 NeighbVtx 𝑦)))
25 frgrusgr 30065 . . . . . . . 8 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
2625, 6anim12i 612 . . . . . . 7 ((𝐺 ∈ FriendGraph ∧ (𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥}))) → (𝐺 ∈ USGraph ∧ 𝑥𝑉))
2726adantr 480 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ (𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥}))) ∧ 𝑦 ∉ (𝐺 NeighbVtx 𝑥)) → (𝐺 ∈ USGraph ∧ 𝑥𝑉))
282hashnbusgrvd 29336 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑥𝑉) → (♯‘(𝐺 NeighbVtx 𝑥)) = ((VtxDeg‘𝐺)‘𝑥))
2927, 28syl 17 . . . . 5 (((𝐺 ∈ FriendGraph ∧ (𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥}))) ∧ 𝑦 ∉ (𝐺 NeighbVtx 𝑥)) → (♯‘(𝐺 NeighbVtx 𝑥)) = ((VtxDeg‘𝐺)‘𝑥))
3025, 9anim12i 612 . . . . . . 7 ((𝐺 ∈ FriendGraph ∧ (𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥}))) → (𝐺 ∈ USGraph ∧ 𝑦𝑉))
3130adantr 480 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ (𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥}))) ∧ 𝑦 ∉ (𝐺 NeighbVtx 𝑥)) → (𝐺 ∈ USGraph ∧ 𝑦𝑉))
322hashnbusgrvd 29336 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑦𝑉) → (♯‘(𝐺 NeighbVtx 𝑦)) = ((VtxDeg‘𝐺)‘𝑦))
3331, 32syl 17 . . . . 5 (((𝐺 ∈ FriendGraph ∧ (𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥}))) ∧ 𝑦 ∉ (𝐺 NeighbVtx 𝑥)) → (♯‘(𝐺 NeighbVtx 𝑦)) = ((VtxDeg‘𝐺)‘𝑦))
3424, 29, 333eqtr3d 2776 . . . 4 (((𝐺 ∈ FriendGraph ∧ (𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥}))) ∧ 𝑦 ∉ (𝐺 NeighbVtx 𝑥)) → ((VtxDeg‘𝐺)‘𝑥) = ((VtxDeg‘𝐺)‘𝑦))
35 frgrncvvdeq.d . . . . 5 𝐷 = (VtxDeg‘𝐺)
3635fveq1i 6893 . . . 4 (𝐷𝑥) = ((VtxDeg‘𝐺)‘𝑥)
3735fveq1i 6893 . . . 4 (𝐷𝑦) = ((VtxDeg‘𝐺)‘𝑦)
3834, 36, 373eqtr4g 2793 . . 3 (((𝐺 ∈ FriendGraph ∧ (𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥}))) ∧ 𝑦 ∉ (𝐺 NeighbVtx 𝑥)) → (𝐷𝑥) = (𝐷𝑦))
3938ex 412 . 2 ((𝐺 ∈ FriendGraph ∧ (𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥}))) → (𝑦 ∉ (𝐺 NeighbVtx 𝑥) → (𝐷𝑥) = (𝐷𝑦)))
4039ralrimivva 3196 1 (𝐺 ∈ FriendGraph → ∀𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})(𝑦 ∉ (𝐺 NeighbVtx 𝑥) → (𝐷𝑥) = (𝐷𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1534  wcel 2099  wne 2936  wnel 3042  wral 3057  Vcvv 3470  cdif 3942  {csn 4625  {cpr 4627  cmpt 5226  cfv 6543  crio 7370  (class class class)co 7415  chash 14316  Vtxcvtx 28803  Edgcedg 28854  USGraphcusgr 28956   NeighbVtx cnbgr 29139  VtxDegcvtxdg 29273   FriendGraph cfrgr 30062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7866  df-1st 7988  df-2nd 7989  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-rdg 8425  df-1o 8481  df-2o 8482  df-oadd 8485  df-er 8719  df-en 8959  df-dom 8960  df-sdom 8961  df-fin 8962  df-dju 9919  df-card 9957  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-2 12300  df-n0 12498  df-xnn0 12570  df-z 12584  df-uz 12848  df-xadd 13120  df-fz 13512  df-hash 14317  df-edg 28855  df-uhgr 28865  df-ushgr 28866  df-upgr 28889  df-umgr 28890  df-uspgr 28957  df-usgr 28958  df-nbgr 29140  df-vtxdg 29274  df-frgr 30063
This theorem is referenced by:  frgrwopreglem4a  30114
  Copyright terms: Public domain W3C validator