![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fresfo | Structured version Visualization version GIF version |
Description: Conditions for a restriction to be an onto function. Part of fresf1o 32434. (Contributed by AV, 29-Sep-2024.) |
Ref | Expression |
---|---|
fresfo | ⊢ ((Fun 𝐹 ∧ 𝐶 ⊆ ran 𝐹) → (𝐹 ↾ (◡𝐹 “ 𝐶)):(◡𝐹 “ 𝐶)–onto→𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfn 6586 | . . . 4 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
2 | 1 | biimpi 215 | . . 3 ⊢ (Fun 𝐹 → 𝐹 Fn dom 𝐹) |
3 | 2 | adantr 479 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐶 ⊆ ran 𝐹) → 𝐹 Fn dom 𝐹) |
4 | sseqin2 4215 | . . . . 5 ⊢ (𝐶 ⊆ ran 𝐹 ↔ (ran 𝐹 ∩ 𝐶) = 𝐶) | |
5 | 4 | biimpi 215 | . . . 4 ⊢ (𝐶 ⊆ ran 𝐹 → (ran 𝐹 ∩ 𝐶) = 𝐶) |
6 | 5 | eqcomd 2733 | . . 3 ⊢ (𝐶 ⊆ ran 𝐹 → 𝐶 = (ran 𝐹 ∩ 𝐶)) |
7 | 6 | adantl 480 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐶 ⊆ ran 𝐹) → 𝐶 = (ran 𝐹 ∩ 𝐶)) |
8 | eqidd 2728 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐶 ⊆ ran 𝐹) → (◡𝐹 “ 𝐶) = (◡𝐹 “ 𝐶)) | |
9 | 3, 7, 8 | rescnvimafod 7086 | 1 ⊢ ((Fun 𝐹 ∧ 𝐶 ⊆ ran 𝐹) → (𝐹 ↾ (◡𝐹 “ 𝐶)):(◡𝐹 “ 𝐶)–onto→𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∩ cin 3946 ⊆ wss 3947 ◡ccnv 5679 dom cdm 5680 ran crn 5681 ↾ cres 5682 “ cima 5683 Fun wfun 6545 Fn wfn 6546 –onto→wfo 6549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pr 5431 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5151 df-opab 5213 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-fun 6553 df-fn 6554 df-fo 6557 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |