Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fresfo Structured version   Visualization version   GIF version

Theorem fresfo 46432
Description: Conditions for a restriction to be an onto function. Part of fresf1o 32434. (Contributed by AV, 29-Sep-2024.)
Assertion
Ref Expression
fresfo ((Fun 𝐹𝐶 ⊆ ran 𝐹) → (𝐹 ↾ (𝐹𝐶)):(𝐹𝐶)–onto𝐶)

Proof of Theorem fresfo
StepHypRef Expression
1 funfn 6586 . . . 4 (Fun 𝐹𝐹 Fn dom 𝐹)
21biimpi 215 . . 3 (Fun 𝐹𝐹 Fn dom 𝐹)
32adantr 479 . 2 ((Fun 𝐹𝐶 ⊆ ran 𝐹) → 𝐹 Fn dom 𝐹)
4 sseqin2 4215 . . . . 5 (𝐶 ⊆ ran 𝐹 ↔ (ran 𝐹𝐶) = 𝐶)
54biimpi 215 . . . 4 (𝐶 ⊆ ran 𝐹 → (ran 𝐹𝐶) = 𝐶)
65eqcomd 2733 . . 3 (𝐶 ⊆ ran 𝐹𝐶 = (ran 𝐹𝐶))
76adantl 480 . 2 ((Fun 𝐹𝐶 ⊆ ran 𝐹) → 𝐶 = (ran 𝐹𝐶))
8 eqidd 2728 . 2 ((Fun 𝐹𝐶 ⊆ ran 𝐹) → (𝐹𝐶) = (𝐹𝐶))
93, 7, 8rescnvimafod 7086 1 ((Fun 𝐹𝐶 ⊆ ran 𝐹) → (𝐹 ↾ (𝐹𝐶)):(𝐹𝐶)–onto𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  cin 3946  wss 3947  ccnv 5679  dom cdm 5680  ran crn 5681  cres 5682  cima 5683  Fun wfun 6545   Fn wfn 6546  ontowfo 6549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pr 5431
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5151  df-opab 5213  df-id 5578  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-fun 6553  df-fn 6554  df-fo 6557
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator