![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > focdmex | Structured version Visualization version GIF version |
Description: If the domain of an onto function exists, so does its codomain. (Contributed by NM, 23-Jul-2004.) |
Ref | Expression |
---|---|
focdmex | ⊢ (𝐴 ∈ 𝐶 → (𝐹:𝐴–onto→𝐵 → 𝐵 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fofun 6806 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → Fun 𝐹) | |
2 | funrnex 7951 | . . . 4 ⊢ (dom 𝐹 ∈ 𝐶 → (Fun 𝐹 → ran 𝐹 ∈ V)) | |
3 | 1, 2 | syl5com 31 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → (dom 𝐹 ∈ 𝐶 → ran 𝐹 ∈ V)) |
4 | fof 6805 | . . . . 5 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
5 | 4 | fdmd 6727 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → dom 𝐹 = 𝐴) |
6 | 5 | eleq1d 2813 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → (dom 𝐹 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) |
7 | forn 6808 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
8 | 7 | eleq1d 2813 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → (ran 𝐹 ∈ V ↔ 𝐵 ∈ V)) |
9 | 3, 6, 8 | 3imtr3d 293 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐴 ∈ 𝐶 → 𝐵 ∈ V)) |
10 | 9 | com12 32 | 1 ⊢ (𝐴 ∈ 𝐶 → (𝐹:𝐴–onto→𝐵 → 𝐵 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 Vcvv 3469 dom cdm 5672 ran crn 5673 Fun wfun 6536 –onto→wfo 6540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 |
This theorem is referenced by: f1dmex 7954 f1ovv 7955 fsetprcnex 8872 f1oeng 8983 fodomnum 10072 ttukeylem1 10524 fodomb 10541 cnexALT 12992 hasheqf1oi 14334 imasbas 17485 imasds 17486 elqtop 23588 qtoprest 23608 indishmph 23689 imasf1oxmet 24268 noprc 27699 foresf1o 32286 sge0f1o 45693 sge0fodjrnlem 45727 |
Copyright terms: Public domain | W3C validator |