![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnsnr | Structured version Visualization version GIF version |
Description: If a class belongs to a function on a singleton, then that class is the obvious ordered pair. Note that this theorem also holds when 𝐴 is a proper class, but its meaning is then different. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) |
Ref | Expression |
---|---|
fnsnr | ⊢ (𝐹 Fn {𝐴} → (𝐵 ∈ 𝐹 → 𝐵 = 〈𝐴, (𝐹‘𝐴)〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnresdm 6677 | . . . 4 ⊢ (𝐹 Fn {𝐴} → (𝐹 ↾ {𝐴}) = 𝐹) | |
2 | fnfun 6657 | . . . . 5 ⊢ (𝐹 Fn {𝐴} → Fun 𝐹) | |
3 | funressn 7172 | . . . . 5 ⊢ (Fun 𝐹 → (𝐹 ↾ {𝐴}) ⊆ {〈𝐴, (𝐹‘𝐴)〉}) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝐹 Fn {𝐴} → (𝐹 ↾ {𝐴}) ⊆ {〈𝐴, (𝐹‘𝐴)〉}) |
5 | 1, 4 | eqsstrrd 4019 | . . 3 ⊢ (𝐹 Fn {𝐴} → 𝐹 ⊆ {〈𝐴, (𝐹‘𝐴)〉}) |
6 | 5 | sseld 3979 | . 2 ⊢ (𝐹 Fn {𝐴} → (𝐵 ∈ 𝐹 → 𝐵 ∈ {〈𝐴, (𝐹‘𝐴)〉})) |
7 | elsni 4647 | . 2 ⊢ (𝐵 ∈ {〈𝐴, (𝐹‘𝐴)〉} → 𝐵 = 〈𝐴, (𝐹‘𝐴)〉) | |
8 | 6, 7 | syl6 35 | 1 ⊢ (𝐹 Fn {𝐴} → (𝐵 ∈ 𝐹 → 𝐵 = 〈𝐴, (𝐹‘𝐴)〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ⊆ wss 3947 {csn 4630 〈cop 4636 ↾ cres 5682 Fun wfun 6545 Fn wfn 6546 ‘cfv 6551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pr 5431 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 |
This theorem is referenced by: fnsnb 7179 fnsnbt 41724 |
Copyright terms: Public domain | W3C validator |