![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmul01lt1 | Structured version Visualization version GIF version |
Description: Given a finite multiplication of values betweeen 0 and 1, a value E larger than any multiplicand, is larger than the whole multiplication. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
fmul01lt1.1 | ⊢ Ⅎ𝑖𝐵 |
fmul01lt1.2 | ⊢ Ⅎ𝑖𝜑 |
fmul01lt1.3 | ⊢ Ⅎ𝑗𝐴 |
fmul01lt1.4 | ⊢ 𝐴 = seq1( · , 𝐵) |
fmul01lt1.5 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
fmul01lt1.6 | ⊢ (𝜑 → 𝐵:(1...𝑀)⟶ℝ) |
fmul01lt1.7 | ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 0 ≤ (𝐵‘𝑖)) |
fmul01lt1.8 | ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐵‘𝑖) ≤ 1) |
fmul01lt1.9 | ⊢ (𝜑 → 𝐸 ∈ ℝ+) |
fmul01lt1.10 | ⊢ (𝜑 → ∃𝑗 ∈ (1...𝑀)(𝐵‘𝑗) < 𝐸) |
Ref | Expression |
---|---|
fmul01lt1 | ⊢ (𝜑 → (𝐴‘𝑀) < 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmul01lt1.10 | . 2 ⊢ (𝜑 → ∃𝑗 ∈ (1...𝑀)(𝐵‘𝑗) < 𝐸) | |
2 | nfv 1910 | . . 3 ⊢ Ⅎ𝑗𝜑 | |
3 | fmul01lt1.3 | . . . . 5 ⊢ Ⅎ𝑗𝐴 | |
4 | nfcv 2899 | . . . . 5 ⊢ Ⅎ𝑗𝑀 | |
5 | 3, 4 | nffv 6907 | . . . 4 ⊢ Ⅎ𝑗(𝐴‘𝑀) |
6 | nfcv 2899 | . . . 4 ⊢ Ⅎ𝑗 < | |
7 | nfcv 2899 | . . . 4 ⊢ Ⅎ𝑗𝐸 | |
8 | 5, 6, 7 | nfbr 5195 | . . 3 ⊢ Ⅎ𝑗(𝐴‘𝑀) < 𝐸 |
9 | fmul01lt1.1 | . . . . 5 ⊢ Ⅎ𝑖𝐵 | |
10 | fmul01lt1.2 | . . . . . 6 ⊢ Ⅎ𝑖𝜑 | |
11 | nfv 1910 | . . . . . 6 ⊢ Ⅎ𝑖 𝑗 ∈ (1...𝑀) | |
12 | nfcv 2899 | . . . . . . . 8 ⊢ Ⅎ𝑖𝑗 | |
13 | 9, 12 | nffv 6907 | . . . . . . 7 ⊢ Ⅎ𝑖(𝐵‘𝑗) |
14 | nfcv 2899 | . . . . . . 7 ⊢ Ⅎ𝑖 < | |
15 | nfcv 2899 | . . . . . . 7 ⊢ Ⅎ𝑖𝐸 | |
16 | 13, 14, 15 | nfbr 5195 | . . . . . 6 ⊢ Ⅎ𝑖(𝐵‘𝑗) < 𝐸 |
17 | 10, 11, 16 | nf3an 1897 | . . . . 5 ⊢ Ⅎ𝑖(𝜑 ∧ 𝑗 ∈ (1...𝑀) ∧ (𝐵‘𝑗) < 𝐸) |
18 | fmul01lt1.4 | . . . . 5 ⊢ 𝐴 = seq1( · , 𝐵) | |
19 | 1zzd 12623 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀) ∧ (𝐵‘𝑗) < 𝐸) → 1 ∈ ℤ) | |
20 | fmul01lt1.5 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
21 | elnnuz 12896 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ ↔ 𝑀 ∈ (ℤ≥‘1)) | |
22 | 20, 21 | sylib 217 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘1)) |
23 | 22 | 3ad2ant1 1131 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀) ∧ (𝐵‘𝑗) < 𝐸) → 𝑀 ∈ (ℤ≥‘1)) |
24 | fmul01lt1.6 | . . . . . . 7 ⊢ (𝜑 → 𝐵:(1...𝑀)⟶ℝ) | |
25 | 24 | ffvelcdmda 7094 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐵‘𝑖) ∈ ℝ) |
26 | 25 | 3ad2antl1 1183 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀) ∧ (𝐵‘𝑗) < 𝐸) ∧ 𝑖 ∈ (1...𝑀)) → (𝐵‘𝑖) ∈ ℝ) |
27 | fmul01lt1.7 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 0 ≤ (𝐵‘𝑖)) | |
28 | 27 | 3ad2antl1 1183 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀) ∧ (𝐵‘𝑗) < 𝐸) ∧ 𝑖 ∈ (1...𝑀)) → 0 ≤ (𝐵‘𝑖)) |
29 | fmul01lt1.8 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐵‘𝑖) ≤ 1) | |
30 | 29 | 3ad2antl1 1183 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀) ∧ (𝐵‘𝑗) < 𝐸) ∧ 𝑖 ∈ (1...𝑀)) → (𝐵‘𝑖) ≤ 1) |
31 | fmul01lt1.9 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ ℝ+) | |
32 | 31 | 3ad2ant1 1131 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀) ∧ (𝐵‘𝑗) < 𝐸) → 𝐸 ∈ ℝ+) |
33 | simp2 1135 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀) ∧ (𝐵‘𝑗) < 𝐸) → 𝑗 ∈ (1...𝑀)) | |
34 | simp3 1136 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀) ∧ (𝐵‘𝑗) < 𝐸) → (𝐵‘𝑗) < 𝐸) | |
35 | 9, 17, 18, 19, 23, 26, 28, 30, 32, 33, 34 | fmul01lt1lem2 44973 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀) ∧ (𝐵‘𝑗) < 𝐸) → (𝐴‘𝑀) < 𝐸) |
36 | 35 | 3exp 1117 | . . 3 ⊢ (𝜑 → (𝑗 ∈ (1...𝑀) → ((𝐵‘𝑗) < 𝐸 → (𝐴‘𝑀) < 𝐸))) |
37 | 2, 8, 36 | rexlimd 3260 | . 2 ⊢ (𝜑 → (∃𝑗 ∈ (1...𝑀)(𝐵‘𝑗) < 𝐸 → (𝐴‘𝑀) < 𝐸)) |
38 | 1, 37 | mpd 15 | 1 ⊢ (𝜑 → (𝐴‘𝑀) < 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 Ⅎwnf 1778 ∈ wcel 2099 Ⅎwnfc 2879 ∃wrex 3067 class class class wbr 5148 ⟶wf 6544 ‘cfv 6548 (class class class)co 7420 ℝcr 11137 0cc0 11138 1c1 11139 · cmul 11143 < clt 11278 ≤ cle 11279 ℕcn 12242 ℤ≥cuz 12852 ℝ+crp 13006 ...cfz 13516 seqcseq 13998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-er 8724 df-en 8964 df-dom 8965 df-sdom 8966 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-n0 12503 df-z 12589 df-uz 12853 df-rp 13007 df-fz 13517 df-fzo 13660 df-seq 13999 |
This theorem is referenced by: stoweidlem48 45436 |
Copyright terms: Public domain | W3C validator |