![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fisseneq | Structured version Visualization version GIF version |
Description: A finite set is equal to its subset if they are equinumerous. (Contributed by FL, 11-Aug-2008.) |
Ref | Expression |
---|---|
fisseneq | ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≈ 𝐵) → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pss 3964 | . . . . . 6 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) | |
2 | pssinf 9275 | . . . . . . 7 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐴 ≈ 𝐵) → ¬ 𝐵 ∈ Fin) | |
3 | 2 | expcom 413 | . . . . . 6 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ⊊ 𝐵 → ¬ 𝐵 ∈ Fin)) |
4 | 1, 3 | biimtrrid 242 | . . . . 5 ⊢ (𝐴 ≈ 𝐵 → ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) → ¬ 𝐵 ∈ Fin)) |
5 | 4 | expdimp 452 | . . . 4 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ≠ 𝐵 → ¬ 𝐵 ∈ Fin)) |
6 | 5 | necon4ad 2955 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ⊆ 𝐵) → (𝐵 ∈ Fin → 𝐴 = 𝐵)) |
7 | 6 | 3impia 1115 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ Fin) → 𝐴 = 𝐵) |
8 | 7 | 3com13 1122 | 1 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≈ 𝐵) → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ≠ wne 2936 ⊆ wss 3945 ⊊ wpss 3946 class class class wbr 5143 ≈ cen 8955 Fincfn 8958 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-om 7866 df-1o 8481 df-en 8959 df-dom 8960 df-sdom 8961 df-fin 8962 |
This theorem is referenced by: en1eqsnOLD 9294 en2eqpr 10025 en2eleq 10026 psgnunilem1 19442 sylow2blem1 19569 fislw 19574 sylow2 19575 cyggenod 19833 ablfac1c 20022 ablfac1eu 20024 fta1blem 26099 vieta1 26241 upgrex 28899 fisshasheq 34719 poimirlem26 37114 fiuneneq 42611 |
Copyright terms: Public domain | W3C validator |