MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fdmeu Structured version   Visualization version   GIF version

Theorem fdmeu 6958
Description: There is exactly one codomain element for each element of the domain of a function. (Contributed by AV, 20-Apr-2025.)
Assertion
Ref Expression
fdmeu ((𝐹:𝐴𝐵𝑋𝐴) → ∃!𝑦𝐵 (𝐹𝑋) = 𝑦)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝐹   𝑦,𝑋

Proof of Theorem fdmeu
StepHypRef Expression
1 feu 6776 . 2 ((𝐹:𝐴𝐵𝑋𝐴) → ∃!𝑦𝐵𝑋, 𝑦⟩ ∈ 𝐹)
2 ffn 6725 . . . . . 6 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
32anim1i 613 . . . . 5 ((𝐹:𝐴𝐵𝑋𝐴) → (𝐹 Fn 𝐴𝑋𝐴))
43adantr 479 . . . 4 (((𝐹:𝐴𝐵𝑋𝐴) ∧ 𝑦𝐵) → (𝐹 Fn 𝐴𝑋𝐴))
5 fnopfvb 6954 . . . 4 ((𝐹 Fn 𝐴𝑋𝐴) → ((𝐹𝑋) = 𝑦 ↔ ⟨𝑋, 𝑦⟩ ∈ 𝐹))
64, 5syl 17 . . 3 (((𝐹:𝐴𝐵𝑋𝐴) ∧ 𝑦𝐵) → ((𝐹𝑋) = 𝑦 ↔ ⟨𝑋, 𝑦⟩ ∈ 𝐹))
76reubidva 3388 . 2 ((𝐹:𝐴𝐵𝑋𝐴) → (∃!𝑦𝐵 (𝐹𝑋) = 𝑦 ↔ ∃!𝑦𝐵𝑋, 𝑦⟩ ∈ 𝐹))
81, 7mpbird 256 1 ((𝐹:𝐴𝐵𝑋𝐴) → ∃!𝑦𝐵 (𝐹𝑋) = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  ∃!wreu 3370  cop 4636   Fn wfn 6546  wf 6547  cfv 6551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pr 5431
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-br 5151  df-opab 5213  df-id 5578  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-fv 6559
This theorem is referenced by:  uspgriedgedg  29007
  Copyright terms: Public domain W3C validator