![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fdmeu | Structured version Visualization version GIF version |
Description: There is exactly one codomain element for each element of the domain of a function. (Contributed by AV, 20-Apr-2025.) |
Ref | Expression |
---|---|
fdmeu | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → ∃!𝑦 ∈ 𝐵 (𝐹‘𝑋) = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feu 6776 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → ∃!𝑦 ∈ 𝐵 〈𝑋, 𝑦〉 ∈ 𝐹) | |
2 | ffn 6725 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
3 | 2 | anim1i 613 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → (𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) |
4 | 3 | adantr 479 | . . . 4 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) |
5 | fnopfvb 6954 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑦 ↔ 〈𝑋, 𝑦〉 ∈ 𝐹)) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → ((𝐹‘𝑋) = 𝑦 ↔ 〈𝑋, 𝑦〉 ∈ 𝐹)) |
7 | 6 | reubidva 3388 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → (∃!𝑦 ∈ 𝐵 (𝐹‘𝑋) = 𝑦 ↔ ∃!𝑦 ∈ 𝐵 〈𝑋, 𝑦〉 ∈ 𝐹)) |
8 | 1, 7 | mpbird 256 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → ∃!𝑦 ∈ 𝐵 (𝐹‘𝑋) = 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∃!wreu 3370 〈cop 4636 Fn wfn 6546 ⟶wf 6547 ‘cfv 6551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pr 5431 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-fv 6559 |
This theorem is referenced by: uspgriedgedg 29007 |
Copyright terms: Public domain | W3C validator |