MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcoconst Structured version   Visualization version   GIF version

Theorem fcoconst 7143
Description: Composition with a constant function. (Contributed by Stefan O'Rear, 11-Mar-2015.)
Assertion
Ref Expression
fcoconst ((𝐹 Fn 𝑋𝑌𝑋) → (𝐹 ∘ (𝐼 × {𝑌})) = (𝐼 × {(𝐹𝑌)}))

Proof of Theorem fcoconst
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . 3 (((𝐹 Fn 𝑋𝑌𝑋) ∧ 𝑥𝐼) → 𝑌𝑋)
2 fconstmpt 5740 . . . 4 (𝐼 × {𝑌}) = (𝑥𝐼𝑌)
32a1i 11 . . 3 ((𝐹 Fn 𝑋𝑌𝑋) → (𝐼 × {𝑌}) = (𝑥𝐼𝑌))
4 simpl 482 . . . . 5 ((𝐹 Fn 𝑋𝑌𝑋) → 𝐹 Fn 𝑋)
5 dffn2 6724 . . . . 5 (𝐹 Fn 𝑋𝐹:𝑋⟶V)
64, 5sylib 217 . . . 4 ((𝐹 Fn 𝑋𝑌𝑋) → 𝐹:𝑋⟶V)
76feqmptd 6967 . . 3 ((𝐹 Fn 𝑋𝑌𝑋) → 𝐹 = (𝑦𝑋 ↦ (𝐹𝑦)))
8 fveq2 6897 . . 3 (𝑦 = 𝑌 → (𝐹𝑦) = (𝐹𝑌))
91, 3, 7, 8fmptco 7138 . 2 ((𝐹 Fn 𝑋𝑌𝑋) → (𝐹 ∘ (𝐼 × {𝑌})) = (𝑥𝐼 ↦ (𝐹𝑌)))
10 fconstmpt 5740 . 2 (𝐼 × {(𝐹𝑌)}) = (𝑥𝐼 ↦ (𝐹𝑌))
119, 10eqtr4di 2786 1 ((𝐹 Fn 𝑋𝑌𝑋) → (𝐹 ∘ (𝐼 × {𝑌})) = (𝐼 × {(𝐹𝑌)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  Vcvv 3471  {csn 4629  cmpt 5231   × cxp 5676  ccom 5682   Fn wfn 6543  wf 6544  cfv 6548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-fv 6556
This theorem is referenced by:  f1ofvswap  7315  s1co  14817  setcmon  18076  pwsco2mhm  18785  smndex1igid  18856  pws1  20261  pwsmgp  20263  imasdsf1olem  24292  cvmliftphtlem  34927  cvmlift3lem9  34937
  Copyright terms: Public domain W3C validator